【题目】下列说法中正确的是( )
A.数据4、6、6、7、9、4的众数是4
B.一组数据的标准差是这组数据的方差的平方
C.数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数
【答案】C
【解析】解:对于A,数据4、6、6、7、9、4的众数是4和6,故原命题错误;
对于B,一组数据的标准差是这组数据方差的算术平方根,故原命题错误;
对于C,数据3,5,7,9的方差是数据6、10、14、18的方差的 ,
所以标准差是它的 ,命题正确;
对于D,频率分布直方图中各小长方形的面积等于相应各组的频率,故原命题错误.
故选:C.
【考点精析】利用平均数、中位数、众数对题目进行判断即可得到答案,需要熟知⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.
科目:高中数学 来源: 题型:
【题目】已知函数 ,其导函数为.
(1)设,若函数在上有且只有一个零点,求的取值范围;
(2)设,且,点是曲线上的一个定点,是否存在实数,使得成立?证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点作的垂线交于另一点,若是的切线,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点F(0,﹣1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.若过F的动直线m交椭圆于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2 , Z的最小值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:
外卖份数(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式, ;
②参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的左、右焦点分别为F1 , F2 , 直线l经过F2且交椭圆C于A,B两点(如图),△ABF1的周长为4 ,原点O到直线l的最大距离为1.
(1)求椭圆C的标准方程;
(2)过F2作弦AB的垂线交椭圆C于M,N两点,求四边形AMBN面积最小时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四边形ABCD为梯形,AD∥BC,∠ABC=90°,AD=2,AB=4,BC=5,图中阴影部分(梯形剪去一个扇形)绕AB旋转一周形成一个旋转体.
(1)求该旋转体的表面积;
(2)求该旋转体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com