精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.

【答案】(I);(II)无零点.

【解析】试题分析:(Ⅰ)设曲线与曲线公共点为则由,即可求的值;

(Ⅱ)函数是否有零点,转化为函数与函数在区间是否有交点,求导根据函数单调性可知最小值为最大值为,从而无零点

试题解析:

(Ⅰ)函数的定义域为

设曲线与曲线公共点为

由于在公共点处有共同的切线,所以,解得.

可得.

联立解得.

(Ⅱ)函数是否有零点,

转化为函数与函数在区间是否有交点,

,可得

,解得,此时函数单调递增;

,解得,此时函数单调递减.

∴当时,函数取得极小值即最小值,.

可得

,解得,此时函数单调递增;

,解得,此时函数单调递减.

∴当时,函数取得极大值即最大值,.

因此两个函数无交点.即函数无零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018四川南充市高三第二次(3月)高考适应性考试已知椭圆的离心率为,点在椭圆上.

I)求椭圆的方程;

II)直线平行于为坐标原点),且与椭圆交于两个不同的点,若为钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,

(1)求证:

(2)若分别为的中点,平面,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若存在,使成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)函数的图象能否与轴相切?若能,求出实数a,若不能,请说明理由;

)求最大的整数,使得对任意,不等式

恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)射线与曲线分别交于点(且均异于原点)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,设直线的极坐标方程为.

(1)求曲线和直线的普通方程;

(2)设为曲线上任意一点,求点到直线的距离的最值.

【答案】(1) ;(2)最大值为,最小值为

【解析】试题分析:(1)根据参数方程和极坐标化普通方程化法即易得结论的普通方程为;直线的普通方程为.(2)求点到线距离问题可借助参数方程,利用三角函数最值法求解即可故设 .即可得出最值

解析:(1)根据题意,由,得

,得

的普通方程为

故直线的普通方程为.

(2)由于为曲线上任意一点,设

由点到直线的距离公式得,点到直线的距离为

.

,即

故点到直线的距离的最大值为,最小值为.

点睛:首先要熟悉参数方程和极坐标方程化普通方程的方法,第一问基本属于送分题所以务必抓住,对于第二问可以总结为一类题型,借助参数方程设点的方便转化为三角函数最值问题求解

型】解答
束】
23

【题目】已知函数.

(1)解关于的不等式

(2)若函数的图象恒在函数图象的上方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,关于轴的对称点为,曲线上任意一点满足;直线和直线的斜率之积为.

(1)求曲线的方程;

(2)过且斜率为正数的直线与抛物线交于两点,其中点轴上方,与曲线交于点,若的面积为的面积为,当时,求直线的方程.

查看答案和解析>>

同步练习册答案