(本小题满分14分)
已知一个四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
(3)若点E为PC的中点,求二面角D-AE-B的大小.
(1)解:由该四棱锥的三视图可知,该四棱锥P-ABCD的底面是边长为1的正方形,
侧棱PC⊥底面ABCD,且PC=2. ----------------------
-------2分
∴----------------------------4分
(2) 不论点E在何位置,都有BD⊥AE---------------------------------------5分
证明如下:连结AC,∵ABCD是正方形
∴BD⊥AC ∵PC⊥底面ABCD 且BD平面ABCD ∴BD⊥PC------7分
又∵∴BD⊥平面PAC
∵不论点E在何位置,都有AE平面PAC
∴不论点E在何位置,都有BD⊥AE ----------------------------10分
(3) 解法1:在平面DAE内过点D作DG⊥AE于G,连结BG
∵CD=CB,EC=EC, ∴Rt△ECD≌Rt△ECB
∴ED=EB, ∵AD=AB ∴△EDA≌△EBA
∴BG⊥EA ∴∠DGB为二面角D-EA-B的平面角---------------12分
∵BC⊥DE, AD∥BC ∴AD⊥DE
在Rt△ADE中==BG
在△DGB中,由余弦定理得
∴∠DGB = …..14分
[解法2:以点C为坐标原点,CD所在的直线为x轴建立空间直角坐标系如图示:
则,从而
设平面ADE和平面ABE的法向量分别为m=(a,b,c),n=
由法向量的性质可得:,
令,则,∴m=(1,0,1),n=(0,-1,-1) ------13分
设二面角D-AE-B的平面角为θ,则 , ∴
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com