【题目】已知方程.
(1)求该方程表示一条直线的条件;
(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线在轴上的截距为-3,求实数的值;
(4)若方程表示的直线的倾斜角是45°,求实数的值.
科目:高中数学 来源: 题型:
【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系:.已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.
(Ⅰ)试将该企业每天生产这种产品所获得的利润表示为的函数;
(Ⅱ)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次篮球定点投篮训练中,规定每人最多投3次.在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在处的投中率,在处的投中率为.该同学选择先在处投一球,以后都在处投,且每次投篮都互不影响.用表示
该同学投篮训练结束后所得的总分,其分布列为:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求随机变量的数学期望;
(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为增强市民的环境保护意识, 面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取名按年龄分组: 第组,第2 组,第组,第组,第组,得到的频率分布直方图如图所示,
(1)若从第组中用分层抽样的方法抽取名志愿者参与广场的宣传活动, 应从第组各抽取多少名志愿者?
(2)在(1)的条件下, 该县决定在这名志愿者中随机抽取名志愿者介绍宣传经验, 求第组至少有—名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象上有一点列,点在轴上的射影是,且 (且), .
(1)求证: 是等比数列,并求出数列的通项公式;
(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.
(3)设四边形的面积是,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com