精英家教网 > 高中数学 > 题目详情

【题目】如图,在几何体中,底面为矩形, 为棱上一点,平面与棱交于点.

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)若,试问平面是否可能与平面垂直?若能,求出值;若不能,说明理由。

【答案】(1)见解析(2)见解析(3)

【解析】试题分析:

(1)利用题意证得平面.所以

(2)利用线面平行的性质定理平面.所以

(3)假设平面是否可能与平面垂直,结合题意可求得

试题解析:

解:(Ⅰ)因为为矩形,所以

又因为

所以平面

所以

(Ⅱ)因为为矩形,所以

所以平面

又因为平面平面

所以

(Ⅲ)平面与平面可以垂直.证明如下:

连接.因为

所以平面

所以

因为,所以

因为平面平面

若使平面平面

平面,所以

在梯形中,因为

所以

所以若使能成立,则的中点.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

(2)若bn=2n+1an+2n+1,数列{bn}的前n项和为Tn.求满足不等式2010n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设,求的最小值;

(2)若曲线仅有一个交点,证明:曲线在点处有相同的切线,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a+a1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a
(Ⅱ)a +a
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+ 的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)给出的一个取值,使得曲线存在斜率为的切线,并说明理由;

(Ⅱ)若存在极小值和极大值,证明: 的极小值大于极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,( ),若对任意,总存在,使得成立,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组: ,并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在 的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a5=15,数列{bn}满足b1=4,b4=20,且{bn﹣an}(n∈N+)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案