精英家教网 > 高中数学 > 题目详情
2.已知随机变量ξ的方差Dξ=4,且随机变量η=5ξ-4,则Dη=100.

分析 利用数学期望方差的性质即可得出.

解答 解:∵Dξ=4,随机变量η=5ξ-4,
则Dη=52Dξ=25×4=100.
故答案为:100;

点评 本题考查了数学期望方差的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列选项中,说法正确的是(  )
A.命题“若am2<bm2,则a<b”的逆命题是真命题
B.命题“若$\overrightarrow{a}$=-$\overrightarrow{b}$,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|”的否命题是真命题
C.x=1是$x-1=\sqrt{x-1}$的必要不充分条件
D.ab>1是a>1且b>1的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f'(x0)=a,则$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{2△x}$的值为(  )
A.-2aB.2aC.aD.-a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z满足(2-3i)z=3+2i(i为虚数单位),则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)计算:${[(1+2i)•{i^{100}}+{(\frac{1-i}{1+i})^5}]^2}-{(\frac{1+i}{{\sqrt{2}}})^{20}}$
(2)已知z,w为复数,(1+3i)•z为纯虚数,$w=\frac{z}{2+i}$,且$|w|=5\sqrt{2}$,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设θ为第二象限的角,cos($\frac{π}{2}$-θ)=$\frac{3}{5}$,则sin2θ=(  )
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知动圆P过点A(-3,0),且与圆B:(x-3)2+y2=64相内切,则动圆P的圆心的轨迹方程为$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{7}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a2>1”是“a3>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn=3n2+10n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令${c_n}=\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案