精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=a2=1,an+1+(n-1)an-1=(n+1)an,n=2,3,4,….关于数列{an}给出下列四个结论:
①数列{an+1-nan}是常数列;                   
②对于任意正整数n,有an≤an+1成立;
③数列{an}中的任意连续3项都不会成等比数列;   
n
k=1
ak
ak+2
=
n
n+1

其中全部正确结论的序号是
①②③④
①②③④
分析:①由an+1+(n-1)an-1=(n+1)an,可得(an+1-nan)-[an-(n-1)an-1]=0,从而可知数列{an+1-nan}是常数列;                   
②由①知,an+1-nan=0,从而可得
an+1
an
=n,故对于任意正整数n,有an≤an+1成立;
③由②知,数列{an}中的任意连续3项都不会成等比数列;   
④确定
an
an+2
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂项法,可求和.
解答:解:①∵an+1+(n-1)an-1=(n+1)an
∴(an+1-nan)-[an-(n-1)an-1]=0
∵a1=a2=1,∴a2-a1=0,
∴数列{an+1-nan}是常数列;                   
②由①知,an+1-nan=0,∴
an+1
an
=n,∴对于任意正整数n,有an≤an+1成立;
③由②知,数列{an}中的任意连续3项都不会成等比数列;   
④∵
an+1
an
=n,
an+2
an+1
=n+1
,∴
an
an+2
=
1
n(n+1)
=
1
n
-
1
n+1

n
k=1
ak
ak+2
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=
n
n+1

综上,正确结论的序号是①②③④
故答案为①②③④
点评:本题考查数列递推式,考查裂项法求数列的和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案