精英家教网 > 高中数学 > 题目详情

已知函数
(1)求上的最大值;
(2)若直线为曲线的切线,求实数的值;
(3)当时,设,且,若不等式恒成立,求实数的最小值.

(1)(2).   (3)的最小值为

解析试题分析:
(1)利用导数可以求解函数单调性得到极值与最值,但是函数含有参数,故而需要讨论,首先对函数求定义域,求导可以发现导函数的分母恒大于0不影响导函数符号,故考虑分子大于0,小于0的解集,讨论a的范围得到区间的单调性,分析就可以得到原函数在固定区间上的最值.
(2)设出切点坐标,利用切点满足的三个条件(①切点在原函数上,坐标满足原函数方程 ②切点在切线上,坐标满足切线方程 ③原函数在切点处的导数为切线的斜率)建立关于a的方程,解方程求出a的值.
(3)由(2)的结论得到此时直线为曲线的切线,且分析原函数与切线的图像可以发现曲线在直线下方,即可以发现在区间上不等式恒成立,作差即可严格证明该不等式是成立的.利用该不等式对放缩为可求和的式子,进而求的的最值,得到的取值范围与最值.
试题解析:
(1),              2分
,解得(负值舍去),
,解得
(ⅰ)当时,由,得
上的最大值为.              3分
(ⅱ)当时,由,得
上的最大值为.             4分
(ⅲ)当时,时,,在时,
上的最大值为.         5分
(2)设切点为,则             6分
,有,化简得
, ①
,有,②
由①、②解得.                 9分
(3)当时,
由(2)的结论直线为曲线的切线,
在直线上,
根据图像分析,曲线在直线下方.         10分
下面给出证明:当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,EFAB上,是被切去的一个等腰直角三角形,斜边的两个端点,设AEFBx(cm).

①某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
②某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.对于任意实数x恒有
(1)求实数的最大值;
(2)当最大时,函数有三个零点,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 (其中是自然对数的底)
(1) 若处取得极值,求的值;
(2) 若存在极值,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的单调区间,并证明对[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)将y=f(x)的图像向下平移a(a>0)个单位,同时将y=g(x)的图像向上平移b(b>0)个单位,使它们恰有四个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象与轴异于原点的交点M处的切线为轴的交点N处的切线为, 并且平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,并且使得不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

同步练习册答案