精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,短轴一个端点到右焦点的距离为.

1 求椭圆的方程;

2 设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

【答案】12

【解析】

试题分析:可以巧用离心率,不妨设,由短轴的一个端点到右焦点的距离为,则,所以椭圆C的方程为,第二步先设直线的方程为,联立方程组消去后得关于的一元二次方程,写出,写出弦长的表达式,又坐标原点O到L的距离的,得到一个的等量关系,代入面积表达式后,借助均值不等式求出最大值即可.

试题解析:解:1设椭圆的半焦距为,依题意

所求椭圆方程为

2

①当轴时,,代入

②当轴不垂直时,设直线的方程为

由已知,得

代入椭圆方程,整理得

时,

时,

当且仅当,即时等号成立.

综上所述

最大时,面积取最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为1的正方形,,且的中点.

I)求证:平面

II)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,分别是的中点

1求证:平面

2为正三角形,且上的一点,,求直线与直线所成角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3名志愿者在10月1号至10月5号期间参加社区服务工作.

(1)若每名志愿者在这5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志愿者恰好连续3天参加社区服务工作的概率;

(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记表示这3名志愿者在10月1号参加社区服务工作的人数,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=为奇函数.

(1) 求a的值;

(2) 判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)证明:

(2)根据(1)证明: .

(B)已知函数 .

(1)用分析法证明:

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生其中考试语文成绩的频率分布直方图所示,其中成绩分组区间是:

.

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,

求数学成绩在之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用 (单位:万元)与隔热层厚度 (单位: )满足关系,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.

(1)求的值及的表达式;

(2)隔热层修建多厚时,总费用达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:

使用智能手机

不使用智能手机

合计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

合计

20

10

30

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

经计算,则下列选项正确的是

A.有99.5%的把握认为使用智能手机对学习有影响

B.有99.5%的把握认为使用智能手机对学习无影响

C.有99.9%的把握认为使用智能手机对学习有影响

D.有99.9%的把握认为使用智能手机对学习无影响

查看答案和解析>>

同步练习册答案