精英家教网 > 高中数学 > 题目详情
下列说法:
①命题“存在”的否定是“对任意的”;
②关于x的不等式恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是( )
A.3
B.2
C.1
D.0
【答案】分析:①根据含量词的命题的否定对①进行判断;
②不等式恒成立转化成函数的最值进行判断出;
③通过举反例对③进行判断;
解答:解:对于①,据含逻辑连接词的命题否定形式:“存在”变为“任意”,结论否定,故①对
对于②∵0≤sin2x≤1,令sin2x=t,
∴sin2x+=t+,则令f(t)=t+,t∈[0,1],根据其图象可知,当x>时,f(t)为递增的,当0<x≤时,f(t)为递减的,
∵t∈[0,1],
∴f(t)≥f(1)=1+2=3,
∴sin2x+≥3
∵a<sin2x+恒成立时,只要a小于sin2x+的最小值即可,
a<3故②对
对于③当a=1,b=-1时,虽然有a+b=0,但f(x)不是奇函数,故③错,
故选B.
点评:本题考查含量词的命题的否定、不等式恒成立问题,考查的知识点比较多.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①命题“存在x ∈R,2x ≤0”的否定是“对任意的x ∈R,2x >0”;
②关于x的不等式a<sin2x+
2
sin2x
恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①命题“存在x0∈R,使2x0≤0”的否定是
“对任意的x ∈R,2x >0”;
②若回归直线方程为
?
y
=1.5x+45
,x∈{1,5,7,13,19},则
.
y
=58.5;
③设函数f(x)=x+ln(x+
1+x2
)
,则对于任意实数a和b,a+b<0是f(a)+f(b))<0的充要条件;
④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省七校高三上学期第一次联考文科数学试卷(解析版) 题型:选择题

下列说法:

①命题“存在” 的否定是“对任意的”;

②关于的不等式恒成立,则的取值范围是

③函数为奇函数的充要条件是;其中正确的个数是(    )

A.3         B.2        C.1      D.0

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省鹰潭市高三第二次模拟考试理科数学卷 题型:选择题

下列说法:

①命题“存在” 的否定是“对任意的”;

②关于的不等式恒成立,则的取值范围是

③函数为奇函数的充要条件是

其中正确的个数是(    )

     A.3         B.2        C.1      D.0

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法:
①命题“存在x ∈R,2x ≤0”的否定是“对任意的x ∈R,2x >0”;
②关于x的不等式a<sin2x+
2
sin2x
恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案