精英家教网 > 高中数学 > 题目详情
关于直线与平面,有以下四个命题:
①若,则;   ②若,则
③若,则;  ④若,则
其中真命题的序号是(      )
A.①②B.③④C.①④D.②③
D

试题分析:由题意,不同的两条直线m,n与两个平面α,β,A,D两个选项可由线线垂直的条件作作出判断,C,B两个选项可由线线平行的条件作出判断,得出正确选项解:由题意两条直线m,n与两个平面α,β由于m∥α,n∥β且α∥β,不能确定两条直线的位置关系,故若m∥α,n∥β且α∥β,则m⊥n是假命题;由于若m⊥α,n⊥β且α⊥β,不能确定两条直线的位置关系,故若m⊥α,n⊥β且α⊥β,则m∥n是假命题;由于m∥α,n⊥β且α⊥β不能确定两条直线的位置关系,故若m∥α,n⊥β且α⊥β,则m∥n是假命题;由于n∥β且α∥β可得出n?α或n∥α,又m⊥α可得出m⊥n故若m⊥α,n∥β且α∥β,则m⊥n是真命题.综上知,D选项正确,故选D
点评:本题的考点是间中直线一直线之间的位置关系,考查了线线平行与线线垂直的条件,解题的关键是理解题意,有着较强的空间立体感知能力,本题考查了空间想像能力,推理判断的能力,是高考中常见题型,其特点是涉及到的知识点多,知识容量大,因此备受高考命题者青睐
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设l、m是两条不同的直线,a,β是两个不同的平面,有下列命题:
①l//m,ma,则l//a ;② l//a,m//a 则 l//m; ③a丄β,la,则l丄β; ④l丄a,m丄a,则l//m.
其中正确的命题的个数是(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线a,b,c及平面a,b,γ,有下列四个命题:
①.若;②。若
③.若,则;       ④。若,则
其中正确的命题序号是                ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间三条不同的直线,是空间中不同的平面,则下列命题中不正确的是(   )
A.若,则
B.若,则
C.当内的射影,若,则
D.当时,若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥,底面为边长为的正三角形,平面平面,上一点,为底面三角形中心.

(Ⅰ)求证∥面
(Ⅱ)求证:
(Ⅲ)设中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,是正三角形,的交点恰好是中点,又,点在线段上,且

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面
所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且设点O是AB的中点。

(1)证明:OC∥平面A1B1C1
(2)求异面直线OC与AlBl所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的两条直线,是不同的两个平面,分析下列命题,其中正确的是(    ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案