精英家教网 > 高中数学 > 题目详情
y=arcsin2x-arccotx的值域
 
考点:反三角函数的运用
专题:计算题,函数的性质及应用
分析:先求出函数的定义域,再判断函数的单调性,根据单调性求最值.
解答: 解:由题意知-1≤2x≤1,解得:-
1
2
≤x≤
1
2

即函数的定义域为[-
1
2
1
2
];
所以arcsin2x是增函数,-arccotx也是增函数,
所以y=arcsin2x-arccotx是增函数,
所以当x=
1
2
时,函数有最大值,为
π
2
-arccot
1
2

当x=-
1
2
时,函数有最小值,为-
π
2
-arccot(-
1
2
),
所以值域为[-
π
2
-arccot(-
1
2
),
π
2
-arccot
1
2
],
故答案为:[-
π
2
-arccot(-
1
2
),
π
2
-arccot
1
2
].
点评:该题考查三角函数的反函数值域,属难题,解答该题时要注意三角函数的图象与其反函数的图象关于y=x对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={1,2,3},B={2,4},则A∩B=(  )
A、{1}
B、{2}
C、{1,2}
D、{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线为y=
3
x,抛物线y2=24x的准线经过双曲线C的一个焦点,则双曲线C的离心率为(  )
A、2
B、3
C、2
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论,其中正确的有
 

①在频率分布直方图中,中位数左边和右边的直方图的面积相等;
②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;
③一个样本的方差是s2=
1
20
[(x1-3)2+(x2-3)2+…+(x20-3)2],则这组样本数据的总和等于60;
④数据a1,a2,a3,…,an的方差为 δ2,则数据2a1,2a2,2a3,…,2an的方差为4δ2

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1,侧棱AA1⊥平面ABC,O、D、E分别是棱AB、A1B1、AA1的中点,点F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)求证:平面OCC1D⊥平面ABB1A1
(Ⅲ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足
x-y+1≥0
x+y-3≥0
2x-y-3≤0
,则目标函数z=2x+3y的最小值为(  )
A、7B、8C、22D、23

查看答案和解析>>

科目:高中数学 来源: 题型:

若角α的终边在直线3x+4y=0上,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,E,F分别为BB1,AC的中点.
(Ⅰ)求证:BF∥平面A1EC;
(Ⅱ)若AB=AA1,求二面角C-A1E-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,已知平面PBC⊥平面ABC,AB是底面△ABC最长的边.三棱锥P-ABC的三视图如图1所示,其中侧视图和俯视图均为直角三角形.
(1)请在图2中,用斜二测画法,把三棱锥P-ABC的直观图补充完整(其中点P在xOz平面内),并指出三棱锥P-ABC的哪些面是直角三角形;
(2)求二面角B-PA-C的正切值;
(3)求点C到面PAB的距离.

查看答案和解析>>

同步练习册答案