精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

分析 (1)由f(x)递增,可得值域,进而得到an=an-1+m,bn=bn-1+m(n≥2),由等差数列的通项公式,即可得到所求;
(2)由单调性求得f(x)的值域,m=2,则bn=kbn-1+2(n≥2),再由bn+$\frac{2}{k-1}$=k(bn-1+$\frac{2}{k-1}$)(n≥2),运用等比数列的定义和通项公式,即可得到结论;
(3)运用函数的单调性,可得f(x)的值域,由作差,运用等比数列的定义和通项公式,结合等比数列的求和公式,化简整理即可得到所求.

解答 解:(1)因为f(x)=x+m,当x∈[an-1,bn-1]时,f(x)为递增函数,
所以其值域为[an-1+m,bn-1+m],
于是an=an-1+m,bn=bn-1+m(n≥2),
又a1=0,b1=1,则an=(n-1)m,bn=1+(n-1)m;
(2)因为f(x)=kx+m,(k>0),当x∈[an-1,bn-1]时,f(x)单调递增,
所以f(x)的值域为[kan-1+m,kbn-1+m],
由m=2,则bn=kbn-1+2(n≥2);
法一:假设存在常数k>0,使得数列{bn},得4=4k+2,则k=$\frac{1}{2}$符合.
法二:假设存在常数k>0,使得数列{bn}满足$\underset{lim}{n→∞}$bn=4,当k=1不符合.
当k≠1时,bn=kbn-1+2,n≥2?bn+$\frac{2}{k-1}$=k(bn-1+$\frac{2}{k-1}$)(n≥2),
则bn=(1+$\frac{2}{k-1}$)kn-1-$\frac{2}{k-1}$,
当0<k<1时,$\underset{lim}{n→∞}$bn=$\frac{2}{1-k}$=4,解得k=$\frac{1}{2}$符合,
(3)因为k<0,当x∈[an-1,bn-1]时,f(x)为递减函数,
所以f(x)的值域为[kbn-1+m,kan-1+m],
于是an=kbn-1+m,bn=kan-1+m,n≥2,
则bn-an=-k(bn-1-an-1),
因此{bn-an}是以-k为公比的等比数列,
又b1-a1=1则有Ti-Si=$\left\{\begin{array}{l}{i,k=-1}\\{\frac{1-(-k)^{i}}{1+k},k<0,k≠-1}\end{array}\right.$,
进而有(T1+T2+…+T2014)-(S1+S2+…+S2014)=$\left\{\begin{array}{l}{2029105,K=-1}\\{\frac{2014+2015k+{k}^{2015}}{(1+k)^{2}},k<0,k≠-1}\end{array}\right.$.

点评 本题考查等差(比)数列的定义和通项公式的运用,考查存在性问题的解法,注意无穷递缩等比数列的求和公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.命题p:?x∈R,使2x>x;命题q:?x∈(0,$\frac{π}{2}$),0<sinx<1,下列是真命题的是(  )
A.p∧(¬q)B.(¬p)∨(¬q)C.p∨(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中,设点P1(x1,y1)、P2(x2,y2),称d(P1,P2)=max{|x1-x2|,|y1-y2|}(其中max{a,b}表示a、b中的较大数)为P1、P2两点的“切比雪夫距离”;
(1)若P(3,1)、Q为直线y=2x-1上的动点,求P,Q两点的“切比雪夫距离”的最小值;
(2)定点C(x0,y0),动点P(x,y)满足d(C,P)=r(r>0),请求出P点所在的曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市场经营一批进价为300元/件的商品,在市场试销中发现,此商品的日销售量y(件)与销售单价x(元)之间存在一次函数的关系,且销售单价为300元时,销售量是60件;销售单价为400元时,销售量是50件.
(1)求出y与x的函数关系式y=f(x);
(2)设经营此商品的日销售利润为w元,根据上述关系,写出w关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?最大日销售利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简$\sqrt{{{(π-4)}^2}}+\root{3}{{{{(π-5)}^3}}}$的结果是(  )
A.2π-9B.9-2πC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下向量中,可以作为直线$|{\begin{array}{l}1&0&1\\ x&2&1\\ y&1&1\end{array}}|=0$的一个方向向量是(  )
A.$\overrightarrow d=({1,-2})$B.$\overrightarrow d=({1,2})$C.$\overrightarrow d=({-2,1})$D.$\overrightarrow d=({2,1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,则该同学数学成绩的中位数为84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有1999个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1999个集合的并集有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,将函数y=ex+1的图象沿着x轴的正方向平移1个单位长度,再作关于y轴的对称变换,得到函数f(x)的图象,则函数f(x)的解析式为f(x)=e-x

查看答案和解析>>

同步练习册答案