精英家教网 > 高中数学 > 题目详情

【题目】已知一个几何体的三视图如下图,大致画出它的直观图,并求出它的表面积和体积.

【答案】解:几何体是一个以直角梯形为底面的直四棱柱.
由三视图得:此棱柱的高是1,底面直角梯形的两个底边长分别为1与2,垂直于底边的腰长度是1,
故与底边不垂直的腰的长度为
所以体积V=S梯形h=
表面积S表面=2S+S侧面=

【解析】由三视图可以知道,此几何体是一个直四棱柱,其体积可以用梯形的面积乘以高来求,四个侧面都是矩形,其底面是一个直角梯形,故可以根据三视图求出相应的边长,利用面积公式与体积公式求值即可.
【考点精析】本题主要考查了由三视图求面积、体积的相关知识点,需要掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 过圆上任意一点轴引垂线垂足为(点可重合),点的中点.

(1)求的轨迹方程;

(2)若点的轨迹方程为曲线,不过原点的直线与曲线交于两点,满足直线 的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=(2,4),B=(a,3a)
(1)若AB,求实数a的取值范围;
(2)若A∩B≠,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】酒后违法驾驶机动车危害巨大,假设驾驶人员血液中的酒精含量为(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车.如图为某市交管部分在一次夜间行动中依法查出的名饮酒后违法驾驶机动车者抽血检测后所得频率分布直方图(其中人数包含).

(Ⅰ)求查获的醉酒驾车的人数;

(Ⅱ)从违法驾车的人中按酒后驾车和醉酒驾车利用分层抽样抽取人做样本进行研究,再从抽取的人中任取人,求人中含有醉酒驾车人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (本小题满分12分)

如图, 在四面体ABOC中, , 且.

)设为的中点, 证明: 在上存在一点,使,并计算

)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列,定义为数列的一阶差分数列,其中,( ),设

(1)若,求证: 是等比数列,并求出的通项公式;

(2)若,又数列满足:

①求数列的前

②求证:数列中的任意一项总可以表示成该数列中其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,点的中点,点为线段垂直平分线上的一点,且,四边形为矩形,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,点到直线的距离为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 , 则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是(  )
A.当k>0时,有3个零点;当k<0时,有2个零点
B.当k>0时,有4个零点;当k<0时,有1个零点
C.无论k为何值,均有2个零点
D.无论k为何值,均有4个零点

查看答案和解析>>

同步练习册答案