精英家教网 > 高中数学 > 题目详情

【题目】如图,已知为等边三角形,为等腰直角三角形,,平面平面ABD,点E与点D在平面ABC的同侧,且.FAD中点,连接EF.

1)求证:平面ABC

2)求二面角的余弦值.

【答案】1)见解析;(2

【解析】

1)取AB中点为O,连接OCOF,证明四边形OCEF为平行四边形,EFOC,然后证明EF∥平面ABC

2)以O为坐标原点,分别以的方向为xyz轴正方向,建立空间直角坐标系.不妨令正三角形ABC的边长为2,求出相关的的坐标,求出平面AEC的法向量,平面AED的法向量,取法向量的方向一进一出,利用空间向量的公式求解即可.

1)证明:取AB中点为O,连接OCOF,∵OF分别为ABAD中点,

OFBDBD2OF,又CEBDBD2CE,∴CEOFCEOF,∴四边形OCEF为平行四边形,∴EFOC

OC平面ABCEF平面ABC,∴EF∥平面ABC

2)∵三角形ABC为等边三角形,OAB中点,∴OCAB,∵平面ABC⊥平面ABD且平面ABC∩平面ABDAB

BDABBD平面ABD,∴BD⊥平面ABC,又OFBD,∴OF⊥平面ABC

O为坐标原点,分别以的方向为xyz轴正方向,建立空间直角坐标系.

不妨令正三角形ABC的边长为2,则O000),A100),D(﹣102),

设平面AEC的法向量为,则

不妨令,则

设平面AED的法向量为

∴所求二面角CAED的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列满足

①存在可以生成的数列是常数数列;

②“数列中存在某一项”是“数列为有穷数列”的充要条件;

③若为单调递增数列,则的取值范围是

④只要,其中,则一定存在;

其中正确命题的序号为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,CD两点的坐标为,曲线上的动点P满足.又曲线上的点AB满足.

1)求曲线的方程;

2)若点A在第一象限,且,求点A的坐标;

3)求证:原点到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前项和为,对一切,点都在函数的图象上.

1)求,归纳数列的通项公式(不必证明);

2)将数列依次按1项、2项、3项、4项循环地分为 ,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)当时,求方程的根的个数;

2)若恒成立,求的取值范围.

注: 为自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.

(1)求的值;

(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点。当变化时,求面积的最大值;

(3)在(2)的条件下,经过点作直线与该椭圆交于两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

1)计算,并求数列的通项公式;

2)若数列满足,求证:数列是等比数列;

3)由数列的项组成一个新数列,设为数列的前项和,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;

1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;

2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;

3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?

查看答案和解析>>

同步练习册答案