精英家教网 > 高中数学 > 题目详情

【题目】解含参数a的一元二次不等式:(a﹣2)x2+(2a﹣1)x+6>0.

【答案】解:∵a≠2,当△=(2a﹣1)2﹣24(a﹣2)=(2a﹣7)2≥0.

不等式(a﹣2)x2+(2a﹣1)x+6>0化为[(a﹣2)x+3](x+2)>0.

.(*)

时, ,a﹣2>0,上述(*)不等式的解集为{x| 或x<﹣2};

时,上述(*)不等式化为(x+2)2>0,因此不等式的解集为{x|x≠﹣2};

时, ,a﹣2>0,上述(*)不等式的解集为{x|x>﹣2或 };

当a<2时, ,a﹣2<0,上述(*)不等式化为 ,解得 ,因此不等式的解集为{x| }.

综上可知:①当a﹣2=0时,不等式的解集为{x|x>﹣2};

②当a≠2时,△≥0.

时,不等式的解集为{x| 或x<﹣2};

时,不等式的解集为{x|x≠﹣2};

时,不等式的解集为{x|x>﹣2或 };

当a<2时,不等式的解集为{x| }


【解析】对参数a进行分类讨论,利用一元二次不等式的解法即可得出.
【考点精析】掌握解一元二次不等式是解答本题的根本,需要知道求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体对“男女同龄退休”这一公众关注的问题进行 了民意调査,右表是在某单位得到的数据(人数):

赞同

反对

合计

5

6

11

11

3

14

合计

16

9

25

附表:

P(K2≥K)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1 )能否有90%以上的把握认为对这一问题的看法与性别有关?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握认为对这一问题的看法与性别有关
(1)进一步调查:(ⅰ)从赞同“男女同龄退休”16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率; (ⅱ)从反对“男女同龄退休”的9人中选出3人进行座谈,设参加调査的女士人数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(
A.M<N
B.M=N
C.M>N
D.M、N大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(Ⅰ)若 ,求f(x)的极值;
(Ⅱ)若f(x)在定义域上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ< )的部分图象如图所示.
(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;
(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;
(Ⅲ)若f( )= <α< ),求tan2(α﹣ ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设 ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中ω>0)
(I)求函数f(x)的值域;
(II)若对任意的a∈R,函数y=f(x),x∈(a,a+π]的图象与直线y=﹣1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y=f(x),x∈R的单调增区间.

查看答案和解析>>

同步练习册答案