精英家教网 > 高中数学 > 题目详情
3.设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)•f(y),当x≠y时,f(x)≠f(y)
(1)证明:f(0)=1;
(2)证明:对任意的x∈R都有f(x)>0;
(3)证明:函数f(x)在R上单调递增;
(4)若f(1)=2,当x∈[-1,1]时,f(4x)≤$\frac{f(c)}{4f(-{2}^{x+1})}$恒成立,求实数c的取值范围.

分析 (1)利用赋值法,令x=1,y=0,即可求解,
(2)根据抽象函数的关系进行判断证明.
(3)设x1,x2∈R,且x1>x2,结合当当x>0时,f(x)>1,可得f(x1)>f(x2),进而根据函数单调性的定义,可得函数f(x)在R上的单调性.
(4)利用函数的单调性以及抽象函数的关系,转化为函数的最值问题进行求解即可.

解答 解:(1)令x=1,y=0,则f(0+1)=f(0)f(1)=f(1),
∵f(1)≠0,
∴f(0)=1.
(2)∵当x>0时,f(x)>1
∴当x<0,则-x>0,
得f(x-x)=f(x)f(-x)=f(0)=1,
得$f(x)=\frac{1}{f(-x)}>0$,
故对于任意x∈R,都有f(x)>0,
(3)∵当x>0时,f(x)>1
∴设x1,x2∈R,且x1>x2
则x1-x2>0,∴f(x1-x2)>1,
∴f(x1)=f[(x1-x2)+x2]=f(x1-x2)f(x2)>f(x2),
∴函数f(x)在R上是单调递增函数.
(4)若f(1)=2,则f(1)f(1)=f(1+1)=f(2),
即f(2)=2×2=4,
则不等式f(4x)≤$\frac{f(c)}{4f(-{2}^{x+1})}$恒成立等价为f(4x)•4•f(-2x+1)≤f(c)恒成立,
即f(4x)•f(2)•f(-2x+1)≤f(c)
则f(4x+2-2x+1)≤f(c)
∵函数f(x)单调递增,
∴不等式等价为4x+2-2x+1≤c,
即(2x2+2-2•2x≤c,
设t=2x,∵x∈[-1,1],
∴t∈[$\frac{1}{2}$,2],
则y=g(t)=t2-2t+2=(t-1)2+1,
∵t∈[$\frac{1}{2}$,2],
∴当t=2时,函数y=g(t)取得最大值g(2)=2,
则c≥2,
即实数c的取值范围是[2,+∞).

点评 本题考查的是函数的单调性证明问题.抽象函数的单调性的判定,以及赋值法的应用,在解答的过程当中充分体现了函数单调性的定义、转化法以及赋值法等知识.考查学生的运算和推理能力,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2为椭圆的两个焦点),求椭圆的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-6x+c=0},只有一个元素,求实数c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简:$\sqrt{\frac{2-2sinα}{1+cosα}}$-tan$\frac{α}{2}$,其中$\frac{π}{2}$<α<π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知22x≤($\frac{1}{4}$)x-2
(1)求x的范围;
(2)求函数y=($\frac{1}{4}$)x-1-4($\frac{1}{2}$)x-2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\root{3}{x}$(x≥0)的反函数是f-1(x),则不等式f-1(x)>f(x)的解集为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在x轴上有动点A,直线y=2x上有动点B,定点C(4,3),当△ABC的周长最小时,求A,B两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较logsin1cos1,logsin1tan1,logcos1sin1,logcos1tan1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.底面为正方形的直棱柱,它的底面对角线为$\sqrt{2}$,体对角线为$\sqrt{6}$,则这个棱柱的侧面积是(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案