已知、,椭圆C的方程为,、分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的与外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于A、B两点,与轴相交于点D,若
求的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
本题主要考查直线、圆、椭圆等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想
解:(Ⅰ)依题意可知,P与外切、内切. 设P的半径为,则
-----------------------------------2分
, 2=4,2==2
=2,c=1 , 椭圆C的方程为+=1 ------------------------4分
(Ⅱ)直线AB:y=k(x-1),由
,令A,则,
, ------------------------------------6分
∵
∴,
∵2=,, ------------------------------------8分
2+
=
= , ∴. -----------------------10分
(Ⅲ)设Q(),M(),N()
则切线QM:
切线QN:
∴ ∴M、N在直线上
∴ 直线MN:------------------------------------12分
又
∴直线MN必过定点(). ------------------------------------13分
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
3 |
2 |
5 |
2 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
3 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
4 |
y2 |
3 |
1 |
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com