精英家教网 > 高中数学 > 题目详情

【题目】过P(2,1)且两两互相垂直的直线l1 , l2分别交椭圆 + =1于A,B与C,D.
(1)求|PA||PB|的最值;
(2)求证: + 为定值.

【答案】
(1)解:设直线l1的倾斜角为θ,则l1的参数方程为 (t为参数)

代入椭圆的方程 中,整理得:(cos2θ+4sin2θ)t2+(4cosθ+8sinθ)t﹣8=0,

∴由韦达定理可知:tAtB=﹣

∴|PA||PB|= =

故|PA||PB|的最大值为8,最小值为2


(2)解:∵l1⊥l2,不妨设l1的倾斜角小于l2的倾斜角,

则l2的倾斜角为 +θ,

因此直线l2的参数方程为 (t为参数)

代入椭圆的方程 + =1,

整理得:(sin2θ+4cos2θ)t2+4(2cosθ﹣sinθ)t﹣8=0,

∴|PC||PD|=丨tCtD丨=

+ = + =

+ 为定值


【解析】(1)由题意设出直线l1的参数方程,代入椭圆方程,利用韦达定理求得tAtB=﹣ ,由|PA||PB|= = ,根据正弦函数图象及性质即可求得|PA||PB|的最值;(2)由l1⊥l2 , 求得l2的参数方程,并根据韦达定理求得|PC||PD|=丨tCtD丨= ,表示出 + ,根据同角三角函数基本关系即可求证 + 为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的圆的圆心轴的非负半轴上,且圆截直线所得弦长为

(1)求的标准方程;

(2)若过点且斜率为的直线交圆两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:y=x+m﹣2的图象不经过第二象限,命题q:方程x2+ =1表示焦点在x轴上的椭圆. (Ⅰ)试判断p是q的什么条件;
(Ⅱ)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.

(1)求圆C的普通方程和直线的直角坐标方程;

(2)点P是圆C上任一点,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)是否存在实数,使函数上有最小值2?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数上是减函数,命题

(1)若为假命题,求实数的取值范围;

(2)若“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线程为6x﹣y+7=0.

(1)求函数y=f(x)的解析式;

(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yAsin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示

(1)求此函数的解析式;

(2)求此函数在(﹣2π,2π)上的递增区间.

查看答案和解析>>

同步练习册答案