精英家教网 > 高中数学 > 题目详情

已知数列满足,且对任意非负整数均有:.
(1)求
(2)求证:数列是等差数列,并求的通项;
(3)令,求证:.

:(1);(2);(3)详见解析.

解析试题分析:(1)对m、n赋值,想方设法将条件变出.为了得到,显然令m=n即可.
为了得到,令m=1,n=0即可.
(2)首先要想办法得相邻两项(三项也可)间的递推关系.
要证数列是等差数列,只需证明为常数即可.
(3)数列中有关和的不等式的证明一般有以下两种方向,一是先求和后放缩,二是先放缩后求和.在本题中,易得,∴
这是典型的用裂项法求和的题.故先求出和来,然后再用放缩法证明不等式.
试题解析:(1)令,          1分
,得,∴        3分
(2)令,得:
,又
∴数列是以2为首项,2为公差的等差数列.


            9分
(3)
    13分
考点:1、递推数列;2、等差数列;3、不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设正数列的前项和为,且
(1)求数列的首项
(2)求数列的通项公式;
(3)设是数列的前项和,求使得对所有都成立的最小正整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知直角的三边长,满足 
(1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(2)已知成等比数列,若数列满足,证明数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.
(I)求数列{an}的通项公式an
(II)求数列的前n项和Sn的最大值及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:的前项和为
(Ⅰ)求
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式为,在等差数列数列中,,且,又成等比数列.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为零的等差数列的前3项和,且成等比数列.
(1)求数列的通项公式及前n项的和
(2)设的前n项和,证明:
(3)对(2)问中的,若对一切恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的前项和记为,已知.
(1)求数列的通项
(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等差数列,且.
(Ⅰ)求数列的通项公式及其前项和
(Ⅱ)若数列满足求数列的通项公式.

查看答案和解析>>

同步练习册答案