精英家教网 > 高中数学 > 题目详情
6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为$\frac{3}{2}$.

分析 可先画出图形,对$\overrightarrow{AB}=\overrightarrow{CB}-\overrightarrow{CA}$的两边平方,进行数量积的运算即可得到$3=|\overrightarrow{CB}{|}^{2}+|\overrightarrow{CA}{|}^{2}-|\overrightarrow{CB}||\overrightarrow{CA}|$,根据不等式a2+b2≥2ab即可得到$|\overrightarrow{CA}||\overrightarrow{CB}|≤3$,这样便可求出$\overrightarrow{CA}•\overrightarrow{CB}$的最大值.

解答 解:如图,

$\overrightarrow{AB}=\overrightarrow{CB}-\overrightarrow{CA}$;
∴${\overrightarrow{AB}}^{2}={\overrightarrow{CB}}^{2}+{\overrightarrow{CA}}^{2}-2\overrightarrow{CB}•\overrightarrow{CA}$;
∴$3=|\overrightarrow{CB}{|}^{2}+|\overrightarrow{CA}{|}^{2}-|\overrightarrow{CB}||\overrightarrow{CA}|$$≥2|\overrightarrow{CB}||\overrightarrow{CA}|-|\overrightarrow{CB}||\overrightarrow{CA}|=|\overrightarrow{CB}||\overrightarrow{CA}|$;
即$|\overrightarrow{CB}||\overrightarrow{CA}|≤3$;
∴$\overrightarrow{CA}•\overrightarrow{CB}=|\overrightarrow{CA}||\overrightarrow{CB}|cos\frac{π}{3}$=$\frac{1}{2}|\overrightarrow{CA}||\overrightarrow{CB}|≤\frac{3}{2}$;
∴$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 考查向量减法的几何意义,向量数量积的运算及计算公式,以及不等式a2+b2≥2ab的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)(x∈R)满足:f(x+2)=f(x),且当x∈[-1,1]时,f(x)=x2,那么方程f(x)=|lgx|的解的个数为(  )
A.1个B.8个C.9个D.10个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x>0,y>0,且$\frac{1}{x}+\frac{9}{y}=1$,则x+2y的最小值为19+6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.将含有3n个正整数的集合M分成元素个数相等且两两没有公共元素的三个集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素满足条件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,则称M为“完并集合”.
(1)若M={1,x,3,4,5,6}为“完并集合”,求x的值;
(2)对于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合条件的集合C中,求元素乘积最小的集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集为R,集合M={-1,1,2,4},N={x|x2-2x≥3},则M∩(∁RN)=(  )
A.{-1,2,2}B.{1,2}C.{4}D.{x|-1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线上存在点P,使得P到两个焦点的距离之比为2:1,则称此双曲线存在“L点”,下列双曲线中存在“L点”的是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{k}{|x|}$-1(x≠0),k∈R.
(1)当k=3时,试判断f(x)在(-∞,0)上的单调性,并用定义证明;
(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;
(3)当k∈R时,试讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小芳投掷一枚均匀的骰子,则它投掷得的点数为奇数的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)满足:①f(x)+f(2-x)=0;②f(x-2)=f(-x),③在[-1,1]上表达式为f(x)=$\sqrt{1-{x}^{2}}$,则函数f(x)与函数g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$的图象在区间[-3,3]上的交点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案