精英家教网 > 高中数学 > 题目详情
已知复数z=(x-2)+y•i(x,y∈R),当此复数的模为1时,代数式
yx
的取值范围是
 
分析:根据所给的复数和复数的模长是1,得到关于x,y之间的关系,即x,y在以(2,0)为圆心,1为半径的圆上,而要求的代数式是圆上的点与原点连线的斜率,根据圆心到直线的距离得到结果.
解答:解:∵复数z=(x-2)+y•i,
复数的模为1,
∴(x-2)2+y2=1,
∴(x,y)是圆心为(2,0),半径是1的圆,
代数式
y
x
表示圆上的点与原点连线的斜率,
设过原点的直线的方程是kx-y=0,
圆心到直线的距离是1,
|2k|
1+k2
=1

∴k=±
3
3

∴代数式
y
x
的取值范围是[-
3
3
3
3
]
故答案为:[-
3
3
3
3
]
点评:本题考查复数的代数表示法与复数的几何意义,考查求曲线的轨迹,考查代数式的几何意义,考查点到直线的距离公式,本题是一个比较简单的综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=(x-2)+yi(x,y∈R)的模为
3
,则
y
x
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知复数z=(x-2)+yi(x,y∈R)的模为数学公式,则数学公式的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知复数z=(x-2)+y•i(x,y∈R),当此复数的模为1时,代数式数学公式的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知复数z=(x-2)+y•i(x,y∈R),当此复数的模为1时,代数式的取值范围是   

查看答案和解析>>

同步练习册答案