精英家教网 > 高中数学 > 题目详情

【题目】某池塘中原有一块浮草,浮草蔓延后的面积(平方米)与时间(月)之间的函数关系式是,它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是平方米;②第个月浮草的面积超过平方米;③浮草每月增加的面积都相等;④若浮草面积达到平方米,平方米,平方米所经过的时间分别为,则.其中正确命题的序号有_____.(注:请写出所有正确结论的序号)

【答案】①②④

【解析】

直接利用函数的图象求出函数的解析式,进一步利用函数的额关系式再利用函数的性质的应用求出结果.

解:浮草蔓延后的面积(平方米)与时间(月)之间的函数关系式是,函数的图象经过

所以 ,解得

①当,故选项A正确.

②当第个月时,,故②正确.

③当时,,增加,当时,,增加,故每月的增加不相等,故③错误.

④根据函数的解析式,解得,

同理,,

所以,

所以则.故④正确.

故答案为:①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直线xx1xx2yf(x)图象的任意两条对称轴,且|x1x2|的最小值为 .

(Ⅰ)求f(x)的表达式;

(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数yg(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的准线轴交于椭圆的右焦点为左焦点,椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长于点上一动点,且在之间移动.

(1)当取最小值时,求的方程;

(2)若的边长恰好是三个连接的自然数,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

  1. 求椭圆的方程;
  2. 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性质的函数的全体:在定义域内存在使得成立.

(1)函数是否属于集合M?说明理由;

(2)设函数,求的取值范围;

(3)已知函数图象与函数的图象有交点,根据该结论证明:函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是( )

①命题:“,若,则”,用反证法证明时应假设

②若,则中至少有一个大于

③若成等比数列,则

④命题:“,使得”的否定形式是:“,总有.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的平底型函数.

)判断函数是否为R上的平底型函数? 并说明理由;

)设是()中的平底型函数,k为非零常数,若不等式对一切R恒成立,求实数的取值范围;

)若函数是区间上的平底型函数,求的值.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

同步练习册答案