精英家教网 > 高中数学 > 题目详情

【题目】是直线与函数图像的两个相邻的交点,且.

(1)求的值和函数的单调增区间;

(2)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求函数的对称轴方程.

【答案】(1) , 增区间;(2).

【解析】试题分析:(1根据余弦函数的二倍角公式以及两角和余弦函数得 ,由及周期公式可得,从而可得函数的解析式,根据余弦函数的单调性解不等式可得结果;2根据三角函数的放缩变换与平移变换可得 利用余弦函数的对称性可得结果.

试题解析:(1 因为是直线与函数图像的两个相邻的交点,且所以 所以;由 可得所以可知函数的单调增区间是

2)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),得到函数 的图象,再将 的图象向左平移个单位,得到函数 图象,由 可得函数的对称轴方程为, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线(1)求曲线的普通方程;(2)若点在曲线上,点 ,当点在曲线上运动时,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣2|x﹣1|.
(1)解不等式f(x)≥﹣2;
(2)对任意x∈R,都有f(x)≤x﹣a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinx+1. (Ⅰ)设ω为大于0的常数,若f(ωx)在区间 上单调递增,求实数ω的取值范围;
(Ⅱ)设集合 ,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c且b=c,∠A的平分线为AD,若 =m
(1)当m=2时,求cosA
(2)当 ∈(1, )时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正的数列{an}是等比数列,a1=2,a5=32,数列{bn}满足:对于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n , 求 的值;
(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD满足AD∥BC,BA=AD=DC= BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.

(1)求三棱锥E﹣ACB1的体积;
(2)证明:B1E∥平面ACF;
(3)证明:平面B1GD⊥平面B1DC.

查看答案和解析>>

同步练习册答案