精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,侧面,已知,点是棱的中点.

1)求证:平面

2)求二面角的余弦值;

3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

【答案】(1)证明见解析(2)(3)存在,.

【解析】

1)根据线面垂直的判定定理,即可证得平面.

2)以为原点,分别以的方向为轴的正方向建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解;

3)假设存在点,设,根据,得到的坐标,结合平面的法向量为列出方程,即可求解.

1)由题意,因为,∴

又∴,∴

侧面,∴.

又∵平面

∴直线平面.

2)以为原点,分别以的方向为轴的正方向建立如图所示的空间直角坐标系,

则有

设平面的一个法向量为

,∴,令,则,∴

设平面的一个法向量为

,∴,令,则,∴

,∴.

设二面角,则.

∴设二面角的余弦值为.

3)假设存在点,设,∵

,∴

设平面的一个法向量为

,得.

,∴,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:

分组

频数

频率

15

0.30

29

2

合计

1

1)求出表中及图中的值;

2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间内的人数;

3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求的极小值;

2)若对任意的实数a,函数上总有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面是边长为2的等边三角形且垂直于底面的中点.

1)求证:直线平面

2)点在棱上,且二面角的余弦值为,求直线与底面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,且.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数为.

1)讨论函数的单调性;

2)若,关于的不等式恒成立,求实数的取值范围;

3)若函数有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到直线的距离比到点的距离大

1)求动点的轨迹的方程;

2上两点,为坐标原点,,过分别作的两条切线,相交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系xOy中,设倾斜角为α的直线lt为参数)与曲线Cθ为参数)相交于不同的两点AB

)若α,求线段AB中点M的坐标;

)若|PA·PB|=|OP,其中P2),求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

同步练习册答案