精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

【答案】,

【解析】

试题分析:)由参数方程消去参数即得;由极坐标方程化为直角坐标方程,根据斜率即得倾斜角

)根据在直线上, 可设直线的参数方程代入椭圆方程化简,根据一元二次方程根与系数的关系,利用参数的几何意义求解.

试题解析:解法一:()由消去参数,得

,得,(*)

代入(*),化简得

所以直线的倾斜角为

)由()知,点在直线上, 可设直线的参数方程为为参数),

为参数),

代入并化简,得

两点对应的参数分别为

,所以

所以

解法二:()同解法一.

)直线的普通方程为.

消去

于是.

,则,所以.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品展开促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示转盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有4个白球,4个红球和4个篮球的盒子中一次性摸出3球(这些球初颜色外完全相同),如果摸到的是3个不同颜色的球,即为中奖.

(Ⅰ)试问:购买该商品的顾客在哪家商场中奖的可能性大?说明理由;

(Ⅱ)记在乙商场购买该商品的顾客摸到篮球的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,

(1)若函数为奇函数,求的值;

(2)若函数上有意义,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(a∈R)

(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;

(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R(x)其中x是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},满足BCC,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形是两个边长为2的正三角形,

(1)求证:平面⊥平面

(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求证:平面ABC平面ACD;

(2)EAB中点,求点A到平面CED的距离.

查看答案和解析>>

同步练习册答案