精英家教网 > 高中数学 > 题目详情
(2011•大连二模)如图,在棱长AB=AD=2,AA1=3的长方体ABCD-A1B1C1D1中,点E是平面BCC1B1内动点,点F是CD的中点.
(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;
(Ⅱ)求平面AB1F与平面ABB1A1所成的锐二面角的大小.
分析:(Ⅰ)以A为原点,AB、AD、AA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设E(2,y,z)利用空间向量方法
将D1E⊥平面AB1F转化为
D1E
AF
=0
D1E
AB1
=0
,进行代数运算,解出y,z.确定出E位置.
(Ⅱ)方法一:当D1E⊥平面AB1F时,平面AB1F的法向量为
D1E
,又
AD
是平面A1AB1的法向量,利用两法向量夹角求出平面AB1F与平面ABB1A1所成的锐二面角的大小.
法二:取AB的中点G,可证:FG⊥平面ABB1A1,过点G作GH⊥AB1于H点,连接FH,则FH⊥AB1,所以∠GHF为所求二面角的平面角,在△GHF中求解即可.
解答:解:(Ⅰ)以A为原点,AB、AD、AA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,
A(0,0,0),F(1,2,0),B1(2,0,3),D1(0,2,3),
设E(2,y,z),则
D1E
=(2,y-2,z-3)
AF
=(1,2,0),
AB1
=(2,0,3)
.(4分)
由D1E⊥平面AB1F∴
D1E
AF
=0
D1E
AB1
=0.
2+2(y-2)=0
4+3(z-3)=0
y=1
z=
5
3
.

∴E(2,1,
,5
3
) 为所求.  …(6分)
(Ⅱ)方法一:当D1E⊥平面AB1F时,
D1E
=(2,-1,-
4
3
)

AD
是平面A1AB1的法向量,
AD
=(0,2,0)
.(8分)cos<
AD
D1E
>=
AD
D1E
|
AD
|•|
D1E
|
=
2×0+(-1)×2+(-
4
3
)×0
61
3
=-
3
61
61

∴面AB1F与平面ABB1A1所成的锐二面角的大小arccos
3
61
61
.(12分)
方法二:取AB的中点G,可证:FG⊥平面ABB1A1
过点G作GH⊥AB1于H点,连接FH,则FH⊥AB1
所以∠GHF为所求二面角的平面角.…(9分)
在△GHF中,FG=2,FHFH=1×tan∠B1AB=
3
13
tan∠GHF=
GF
GH
=
2
13
3

∴面AB1F与平面ABB1A1所成的锐二面角的大小arccos
3
61
61
.(12分)
点评:本题考查空间直线和平面垂直的判定.考查空间想象、推理论证能力.利用空间向量的方法,能降低空间想象难度,思,将几何元素位置关系转化为代数运算表示.是人们研究解决几何体问题又一有力工具.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•大连二模)选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为线段PA的中点,过点D引割线交⊙O于B,C两点.
求证:∠DPB=∠DCP.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•大连二模)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•大连二模)已知x,y满足线性约束条件:
x-2y+3≥0
2x+y-9≤0
2x+6y-9≥0
,若目标函数z=-x+my取最大值的最优解有无数个,则m=
2或-3
2或-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•大连二模)一个几何体的三视图为如图所示的三个直角三角形,则这个几何体的体积为
1
2
1
2

查看答案和解析>>

同步练习册答案