【题目】已知椭圆C的中心在原点O,焦点在x轴上,离心率为 ,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程;
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2 + |=|2 ﹣ |,求直线在y轴上截距的取值范围.
【答案】
(1)解:设椭圆C的方程为: =1(a>b>0),半焦距为c.
依题意e= = ,由椭圆C上的点到右焦点的最大距离3,得a+c=3,解得c=1,a=2,
∴b2=a2﹣c2=3,
∴椭圆C的标准方程是 =1
(2)解:设直线l的方程为y=kx+m,联立 ,化为:(3+4k2)x2+8kmx+4m2﹣12=0,
△=64k2m2﹣4(3+4k2)(4m2﹣12)>0,化简得3+4k2>m2.
设A(x1,y1),B(x2,y2),
则x1+x2=﹣ ,x1x2= ,
∵|2 + |=|2 ﹣ |,∴ =0.
∴x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,化为km(x1+x2)+(1+k2)x1x2+m2=0,
∴km(﹣ )+(1+k2)× +m2=0,
化简得7m2=12+12k2.
将k2= ﹣1代入3+4k2>m2.
可得m2 ,又由7m2=12+12k2≥12.
从而∴m2 ,解得m≥ ,或m≤﹣ ,.
所以实数m的取值范围是 ∪
【解析】(1)设椭圆C的方程为: =1(a>b>0),半焦距为c.依题意e= = ,a+c=3,b2=a2﹣c2 , 解出即可得出.(2)设直线l的方程为y=kx+m,与椭圆方程联立化为:(3+4k2)x2+8kmx+4m2﹣12=0,△>0,设A(x1 , y1),B(x2 , y2).由|2 + |=|2 ﹣ |,可得 =0.x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,把根与系数的关系代入化简与△>0联立解出即可得出.
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为,直线l的方程为,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
若,试求点P的坐标;
求四边形PAMB面积的最小值及此时点P的坐标;
求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和大于数字之积”的概率是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题,其中正确命题的个数( )
①若a>|b|,则a2>b2
②若a>b,c>d,则a﹣c>b﹣d
③若a>b,c>d,则ac>bd
④若a>b>o,则 > .
A.3个
B.2个
C.1个
D.0个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C的方程为(x﹣ )2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ= (p∈R)与圆C交于点M,N,求线段MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,,在抛物线上,的重心与此抛物线的焦点重合(如图)
(I)写出该抛物线的方程和焦点的坐标;
(II)求线段中点的坐标;
(III)求弦所在直线的方程
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com