【题目】已知抛物线:的焦点为,直线:与抛物线交于,两点.
(1)若,求直线的方程;
(2)过点作直线交抛物线于,两点,若线段,的中点分别为,,直线与轴的交点为,求点到直线与距离和的最大值.
【答案】(1)或(2)
【解析】
(1)直线方程和抛物线方程联立,可得由利用韦达定理求得即可得出结果.
(2)由(1)中韦达定理可求得点坐标为,直线,且均过焦点为,可求,进而求得直线的方程,得到的坐标为(3,0),设点到直线和的距离分别为,,由利用基本不等式性质,即可求得结果.
解:(1)由已知得,
直线:与联立消,得.
设,,则,.
由,得,
即,得,
所以或.
所以直线的方程为或
(2)由(1)知,所以,所以.
因为直线过点且,所以用替换得.
当时,:,
整理化简得,
所以当时,直线过定点(3,0);
当时,直线的方程为,过点(3,0).
所以点的坐标为(3,0)
设点到直线和的距离分别为,,由,,得.
因为,所以,当且仅当时,等号成立,
所以点到直线和的距离和的最大值为.
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,A1D与AD1交于点E,AA1=AD=2AB=4.
(1)证明:AE⊥平面ECD.
(2)求直线A1C与平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.
若,点K在椭圆E上,、分别为椭圆的两个焦点,求的范围;
证明:直线OM的斜率与l的斜率的乘积为定值;
若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到截口曲线是椭圆.理由如下:如图(2),若两个球分别与截面相切于点,在得到的截口曲线上任取一点,过点作圆锥母线,分别与两球相切于点,由球与圆的几何性质,得,,所以,且,由椭圆定义知截口曲线是椭圆,切点为焦点.这个结论在圆柱中也适用,如图(3),在一个高为,底面半径为的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱所得的截口曲线也为一个椭圆,则该椭圆的离心率为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com