精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

1)若,求直线的方程;

2)过点作直线交抛物线两点,若线段的中点分别为,直线轴的交点为,求点到直线距离和的最大值.

【答案】12

【解析】

1)直线方程和抛物线方程联立,可得利用韦达定理求得即可得出结果.

2)由(1)中韦达定理可求得点坐标为,直线,且均过焦点为,可求,进而求得直线的方程,得到的坐标为(30),设点到直线的距离分别为,由利用基本不等式性质,即可求得结果.

解:(1)由已知得

直线:联立消,得.

,则.

,得

,得

所以.

所以直线的方程为

2)由(1)知,所以,所以.

因为直线过点,所以用替换.

时,:

整理化简得

所以当时,直线过定点(30);

时,直线的方程为,过点(30.

所以点的坐标为(30

设点到直线的距离分别为,由,得.

因为,所以,当且仅当时,等号成立,

所以点到直线的距离和的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若f(x)[02]上是单调函数,求a的值;

2)已知对[12]f(x)≤1均成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于点EAA1AD2AB4.

1)证明:AE⊥平面ECD.

2)求直线A1C与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.

,点K在椭圆E上,分别为椭圆的两个焦点,求的范围;

证明:直线OM的斜率与l的斜率的乘积为定值;

若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面的中点,上一点,且

1)求证:平面

2)若求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到截口曲线是椭圆.理由如下:如图(2),若两个球分别与截面相切于点,在得到的截口曲线上任取一点,过点作圆锥母线,分别与两球相切于点,由球与圆的几何性质,得,所以,且,由椭圆定义知截口曲线是椭圆,切点为焦点.这个结论在圆柱中也适用,如图(3),在一个高为,底面半径为的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱所得的截口曲线也为一个椭圆,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)当时,,求实数的取值范围.

查看答案和解析>>

同步练习册答案