精英家教网 > 高中数学 > 题目详情

【题目】阶梯水价的原则是保基本、建机制、促节约,其中保基本是指保证至少80%的居民用户用水价格不变.为响应国家政策,制订合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,得到数据如下(单位:吨).

郊区:19 25 28 32 34

城区:18 19 21 22 22 23 23 23 24 25 26 27 28 28 28 29 29 31 35 42

1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;

2)设该城市郊区和城区的居民户数比为15,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一阶梯的居民用户用水价格保持不变,试根据样本总体的思想,分析此方案是否符合国家保基本政策.

【答案】1;(2)符合国家保基本政策

【解析】

1)列出所有的基本事件,统计出年人均用水量都不超过30吨的个数;

2)根据题意计算出该城市年人均用水量不超过30吨的居民用户的百分率即可得出结论.

1)从郊区的5户居民中随机抽取2户,其年人均用水量构成的所有样本点为,共10.

其中年人均用水量都不超过30吨的样本点为,共3.

从郊区的5户居民中随机抽取2户,其年人均用水量都不超过30为事件,则.

2)设该城市郊区的居民户数为,则其城区的居民户数为.

依题意,得该城市年人均用水量不超过30吨的居民用户的百分率为.

所有符合国家保基本政策.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班有20人参加语文、数学考试各一次,考试按10分制评分,即成绩是010的整数.考试结果是:(1)没有0分;(2)没有两个同学的语文、数学成绩都相同.我们说同学的成绩好是指同学的语文、数学成绩都不低于”.证明:存在三个同学,使得同学的成绩好,同学的成绩好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼吸酒精含量阀值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝1瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:

该函数模型如下:

根据上述条件,回答以下问题:

(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?

(2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整小时计算)

(参数数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将期中考试的政治成绩(均为整数)分成六段:后得到如下频率分布直方图.

1)根据频率分布直方图,分别求,众数,中位数。

2)估计该校高二年级学生期中考试政治成绩的平均分。

3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在分数段抽取的人数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,点B与点A-1,1)关于原点O对称,P是动点,且直线APBP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)设直线APBP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点

1)求椭圆的方程;

2)求的最小值,并求此时圆的方程;

3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,

求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,侧面底面为线段的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案