6£®¼×¡¢ÒÒÁ½Î»Ñ§Éú²Î¼ÓÊýѧ¾ºÈüÅàѵ£®ÏÖ·Ö±ð´ÓËûÃÇÔÚÅàѵÆÚ¼ä²Î¼ÓµÄÈô¸É´ÎÔ¤Èü³É¼¨ÖÐËæ»ú³éÈ¡8´Î£¬¼Ç¼ÈçÏ£º¼×£º82  81  79  78  95  88  93  84    ÒÒ£º92  95  80  75  83  80  90  85
£¨1£©ÏÖÒª´ÓÖÐÑ¡ÅÉÒ»È˲μÓÊýѧ¾ºÈü£¬´Óƽ¾ù×´¿öºÍ·½²îµÄ½Ç¶È¿¼ÂÇ£¬ÄãÈÏΪÅÉÄÄλѧÉú²Î¼ÓºÏÊÊ£¿Çë˵Ã÷ÀíÓÉ£»
£¨2£©´Ó¼×ÒѳéÈ¡µÄ8´ÎÔ¤ÈüÖÐËæ»ú³éÈ¡Á½´Î³É¼¨£¬ÇóÕâÁ½´Î³É¼¨ÖÐÖÁÉÙÓÐÒ»´Î¸ßÓÚ90µÄ¸ÅÂÊ£®

·ÖÎö £¨1£©·Ö±ðÇó³ö¼×¡¢ÒÒµÄƽ¾ùÊýºÍ·½²î£¬´Ó¶øÅжϽáÂÛ¼´¿É£»
£¨2£©Áоٳö³éÈ¡2´Î³É¼¨¿ÉÄܽá¹ûºÍÁ½´Î³É¼¨ÖÐÖÁÉÙÓÐÒ»´Î¸ßÓÚ90µÄ½á¹û£¬Çó³öÂú×ãÌõ¼þµÄ¸ÅÂʼ´¿É£®

½â´ð ½â£º£¨1£©¼×²Î¼Ó±È½ÏºÏÊÊ£¬ÀíÓÉÈçÏ£º
$\overline{x_¼×}=\frac{1}{8}£¨70¡Á2+80¡Á4+90¡Á2+9+8+8+4+2+1+5+3£©=85$£¬
$\overline{x_ÒÒ}=\frac{1}{8}£¨70¡Á1+80¡Á4+90¡Á3+5+3+5+3+5£©=85$£¬
${S_¼×}^2=\frac{1}{8}[{{{£¨78-85£©}^2}+{{£¨79-85£©}^2}+{{£¨80-85£©}^2}+{{£¨83-85£©}^2}+{{£¨85-85£©}^2}+{{£¨90-85£©}^2}+{{£¨92-85£©}^2}+{{£¨95-85£©}^2}}]$=35.5£¬
${S_ÒÒ}^2=\frac{1}{8}[{{{£¨75-85£©}^2}+{{£¨80-85£©}^2}+{{£¨80-85£©}^2}+{{£¨83-85£©}^2}+{{£¨85-85£©}^2}+{{£¨90-85£©}^2}+{{£¨92-85£©}^2}+{{£¨95-85£©}^2}}]$=41£¬
¡ß$\overline{x_¼×}=\overline{x_ÒÒ}$£¬${S_¼×}^2£¼{S_ÒÒ}^2$£¬
¡à¼×µÄ³É¼¨±È½ÏÎȶ¨£¬ÅɼײμӱȽϺÏÊÊ£®
£¨2£©³éÈ¡2´Î³É¼¨¿ÉÄܽá¹ûÓУº
£¨82£¬81£©£¬£¨82£¬79£©£¬£¨82£¬78£©£¬£¨82£¬95£©£¬£¨82£¬88£©£¬
£¨82£¬93£©£¬£¨82£¬84£©£¬£¨81£¬79£©£¬£¨81£¬78£©£¬£¨81£¬95£©£¬
£¨81£¬88£©£¬£¨81£¬93£©£¬£¨81£¬84£©£¬£¨79£¬78£©£¬£¨79£¬95£©£¬
£¨79£¬88£©£¬£¨79£¬93£©£¬£¨79£¬84£©£¬£¨78£¬95£©£¬£¨78£¬88£©£¬
£¨78£¬93£©£¬£¨78£¬88£©£¬£¨95£¬88£©£¬£¨95£¬93£©£¬£¨95£¬84£©£¬
£¨88£¬93£©£¬£¨88£¬84£©£¬£¨93£¬84£©¹²ÓÐ28ÖÖ£®
Á½´Î³É¼¨ÖÐÖÁÉÙÓÐÒ»´Î¸ßÓÚ90µÄÓУº
£¨82£¬95£©£¬£¨82£¬93£©£¬£¨81£¬95£©£¬£¨81£¬93£©£¬£¨79£¬95£©£¬
£¨79£¬93£©£¬£¨78£¬95£©£¬£¨78£¬93£©£¬£¨95£¬88£©£¬£¨95£¬93£©£¬
£¨95£¬84£©£¬£¨88£¬93£©£¬£¨93£¬84£©¹²ÓÐ13ÖÖ£®
ÔòÕâÁ½´Î³É¼¨ÖÐÖÁÉÙÓÐÒ»´Î¸ßÓÚ90µÄ¸ÅÂÊΪ$P=\frac{13}{28}$£®

µãÆÀ ±¾Ì⿼²éÁËƽ¾ùÊýºÍ·½²îÎÊÌ⣬¿¼²éÌõ¼þ¸ÅÂÊ£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ò»¸ö¶àÃæÌåµÄÈýÊÓͼºÍÖ±¹ÛͼÈçͼËùʾ£¬ÆäÖÐM£¬N£¬P·Ö±ðÊÇAB£¬SC£¬SDµÄÖе㣮
£¨1£©ÇóÖ¤£ºAP¡ÎƽÃæSMC£»
£¨2£©ÇóÈýÀâ׶BNMCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª0¡Üx¡Ü2Çóº¯Êý$y={£¨{\frac{1}{4}}£©^{x-1}}-4{£¨{\frac{1}{2}}£©^x}+2$µÄ×î´óÖµÓë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐÓйØÃüÌâµÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ£º¡°Èôx2=1£¬Ôòx¡Ù1¡±
B£®ÃüÌâ¡°Èôx=y£¬Ôòsinx=siny¡±µÄÄæ·ñÃüÌâΪ¼ÙÃüÌâ
C£®ÃüÌâ¡°´æÔÚx¡ÊR£¬Ê¹µÃx2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°¶ÔÈÎÒâx¡ÊR£¬¾ùÓÐx2+x+1£¼0¡±
D£®¡÷ABCÖУ¬A£¾BÊÇsinA£¾sinBµÄ³ä·Ö±ØÒªÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ò»¸öÈýÀâ׶µÄµ×ÃæÊǵȱßÈý½ÇÐΣ¬¸÷²àÀⳤ¾ùΪ$\sqrt{3}$£¬ÄÇô¸ÃÈýÀâ׶µÄÌå»ý×î´óʱ£¬ËüµÄ¸ßΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{3}}}{3}$B£®$\frac{{\sqrt{3}}}{2}$C£®1D£®$\frac{{\sqrt{10}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=lnx-kx+1£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôf£¨x£©¡Ü0ºã³ÉÁ¢£¬ÊÔÈ·¶¨ÊµÊýkµÄÈ¡Öµ·¶Î§£»
£¨3£©Ö¤Ã÷£º$\frac{ln2}{3}+\frac{ln3}{4}+¡­+\frac{lnn}{n+1}£¼\frac{{n£¨{n-1}£©}}{4}£¨{n¡Ê{N_+}£¬n£¾1}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªPÔÚÅ×ÎïÏßy2=4xÉÏ£¬ÄÇôµãPµ½µãQ£¨2£¬1£©µÄ¾àÀëÓëµãPµ½Å×ÎïÏß½¹µã¾àÀëÖ®ºÍÈ¡µÃ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈçͼΪ´Ó¿ÕÖÐij¸ö½Ç¶È¸©ÊÓ±±¾©°ÂÔË»áÖ÷ÌåÓý³¡¡°Äñ³²¡±¶¥ÅïËùµÃµÄ¾Ö²¿Ê¾Òâͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÏÂÁиø¶¨µÄһϵÁÐÖ±ÏßÖУ¨ÆäÖЦÈΪ²ÎÊý£¬¦È¡ÊR£©£¬ÄÜÐγÉÕâÖÖЧ¹ûµÄÖ»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®y=xsin¦È+1B£®y=x+cos¦ÈC£®xcos¦È+ysin¦È+1=0D£®y=xcos¦È+sin¦È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªËÄÀâ׶P-ABCD£¬µ×ÃæABCDΪÕý·½ÐΣ¬²àÃæPADΪֱ½ÇÈý½ÇÐΣ¬ÇÒPA=PD£¬ÃæPAD¡ÍÃæABCD£¬E¡¢F·Ö±ðΪAB¡¢PDµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºEF¡ÎÃæPBC£»
£¨¢ò£©ÇóÖ¤£ºAP¡ÍÃæPCD£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸