精英家教网 > 高中数学 > 题目详情

【题目】近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我人口、钱粮、 水文、天文、地震等资料的记录.近几年,雾霾来袭,对某市该年11月份的天气情况进行统计,结果如下:表一

日期

天气

日期

天气

由于此种情况某市政府为减少雾霾于次年采取了全年限行的政策.

下表是一个调査机构对比以上两年11月份(该年不限行 天、次年限行天共 天)的调查结果:

表二

不限行

限行

总计

没有雾霾

有雾霾

总计

(1)请由表一数据求 ,并求在该年11月份任取一天,估计该市是晴天的概率;

(2)请用统计学原理计算若没有 的把握认为雾霾与限行有关系,则限行时有多少天没有雾霾?

(由于不能使用计算器,所以表中数据使用时四舍五入取整数)

【答案】(1)(2)

【解析】试题分析:(1)统计没有雾霾天数为,有雾霾天数为,晴天天数为6,根据古典概型概率公式求概率,(2)设限行时 天没有雾霾,代入卡方公式求,再由于没有 的把握可得,化简可得一元二次不等式,解得

试题解析:解:(1) .

(2)设限行时 天没有雾霾,则有雾霾为 天,代入公式

化简为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】暑假期间小辉计划在8月11日至8月20日期间调研某商业中心周边停车场停车状况,根据停车场统计数据,该停车场在此期间“停车难易度”(即停车数量与核定的最大瞬时容量之比,40%以下为较易,40%~60%为一般,60%以上为较难),情况如图所示,小辉随机选择8月11日至8月19日中的某一天达到该商业中心,并连续调研2天.

(Ⅰ)求小辉连续两天都遇上停车场较难的概率;

(Ⅱ)设是小辉调研期间遇上停车较易的天数,求的分布列和数学期望;

(Ⅲ)由图判断从哪天开始连续三天停车难易度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为坐标原点,点F为抛物线C1 的焦点,且抛物线C1上点M处的切线与圆C2 相切于点Q

)当直线MQ的方程为时,求抛物线C1的方程;

)当正数p变化时,记S1 S2分别为FMQFOQ的面积,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos(x+φ)的图象上每点的横坐标缩短为原来的 倍(纵坐标不变),再将所得的图象向左平移 个单位长度后得到的图象关于坐标原点对称,则下列直线中是函数f(x)图象的对称轴的是(
A.x=﹣
B.x=
C.x=﹣
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,左右焦点分别为 是椭圆在第一象限上的一个动点,圆 的延长线, 的延长线以及线段 都相切, 为一个切点.

(1)求椭圆方程;

(2)设 ,过 且不垂直于坐标轴的动点直线 交椭圆于 两点,若以 为邻边的平行四边形是菱形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c(b,c∈R),并设
(1)若F(x)图像在x=0处的切线方程为x﹣y=0,求b、c的值;
(2)若函数F(x)是(﹣∞,+∞)上单调递减,则 ①当x≥0时,试判断f(x)与(x+c)2的大小关系,并证明之;
②对满足题设条件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,圆的参数方程为为参数),(1)直线且与圆相切,求直线的极坐标方程;(2)过点且斜率为的直线与圆交于 两点,若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】专家研究表明,2.5是霾的主要成份,在研究2.5形成原因时,某研究人员研究了2.5与燃烧排放的等物质的相关关系.下图是某地某月2.5与相关性的散点图.

(Ⅰ)根据上面散点图,请你就2.5的影响关系做出初步评价;

(Ⅱ)根据有关规定,当排放量低于排放量达标,反之为排放量超标;当2.5值大于时雾霾严重,反之雾霾不严重.根据2.5与相关性的散点图填写好下面列联表,并判断有多大的把握认为“雾霾是否严重与排放量有关”:

雾霾不严重

雾霾严重

总计

排放量达标

排放量超标

总计

(Ⅲ)我们知道雾霾对交通影响较大.某市交通部门发现,在一个月内,当排放量分别是60,120,180时,某路口的交通流量(单位:万辆)一次是800,600,200,而在一个月内,排放量是60,120,180的概率一次是),求该路口一个月的交通流量期望值的取值范围.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案