【题目】近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我人口、钱粮、 水文、天文、地震等资料的记录.近几年,雾霾来袭,对某市该年11月份的天气情况进行统计,结果如下:表一
日期 |
|
|
|
|
|
|
|
|
|
|
|
| |||
天气 | 晴 | 霾 | 霾 | 阴 | 霾 | 霾 | 阴 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 霾 |
日期 |
|
|
|
|
|
| |||||||||
天气 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
由于此种情况某市政府为减少雾霾于次年采取了全年限行的政策.
下表是一个调査机构对比以上两年11月份(该年不限行 天、次年限行天共 天)的调查结果:
表二
不限行 | 限行 | 总计 | |
没有雾霾 |
| ||
有雾霾 |
| ||
总计 |
(1)请由表一数据求 ,并求在该年11月份任取一天,估计该市是晴天的概率;
(2)请用统计学原理计算若没有 的把握认为雾霾与限行有关系,则限行时有多少天没有雾霾?
(由于不能使用计算器,所以表中数据使用时四舍五入取整数)
科目:高中数学 来源: 题型:
【题目】暑假期间小辉计划在8月11日至8月20日期间调研某商业中心周边停车场停车状况,根据停车场统计数据,该停车场在此期间“停车难易度”(即停车数量与核定的最大瞬时容量之比,40%以下为较易,40%~60%为一般,60%以上为较难),情况如图所示,小辉随机选择8月11日至8月19日中的某一天达到该商业中心,并连续调研2天.
(Ⅰ)求小辉连续两天都遇上停车场较难的概率;
(Ⅱ)设是小辉调研期间遇上停车较易的天数,求的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天停车难易度的方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,O为坐标原点,点F为抛物线C1: 的焦点,且抛物线C1上点M处的切线与圆C2: 相切于点Q.
(Ⅰ)当直线MQ的方程为时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos(x+φ)的图象上每点的横坐标缩短为原来的 倍(纵坐标不变),再将所得的图象向左平移 个单位长度后得到的图象关于坐标原点对称,则下列直线中是函数f(x)图象的对称轴的是( )
A.x=﹣
B.x=
C.x=﹣
D.x=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率 ,左右焦点分别为 是椭圆在第一象限上的一个动点,圆 与 的延长线, 的延长线以及线段 都相切, 为一个切点.
(1)求椭圆方程;
(2)设 ,过 且不垂直于坐标轴的动点直线 交椭圆于 两点,若以 为邻边的平行四边形是菱形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx+c(b,c∈R),并设 ,
(1)若F(x)图像在x=0处的切线方程为x﹣y=0,求b、c的值;
(2)若函数F(x)是(﹣∞,+∞)上单调递减,则 ①当x≥0时,试判断f(x)与(x+c)2的大小关系,并证明之;
②对满足题设条件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,圆的参数方程为(为参数),(1)直线过且与圆相切,求直线的极坐标方程;(2)过点且斜率为的直线与圆交于, 两点,若,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】专家研究表明,2.5是霾的主要成份,在研究2.5形成原因时,某研究人员研究了2.5与燃烧排放的、、、等物质的相关关系.下图是某地某月2.5与和相关性的散点图.
(Ⅰ)根据上面散点图,请你就,对2.5的影响关系做出初步评价;
(Ⅱ)根据有关规定,当排放量低于时排放量达标,反之为排放量超标;当2.5值大于时雾霾严重,反之雾霾不严重.根据2.5与相关性的散点图填写好下面列联表,并判断有多大的把握认为“雾霾是否严重与排放量有关”:
雾霾不严重 | 雾霾严重 | 总计 | |
排放量达标 | |||
排放量超标 | |||
总计 |
(Ⅲ)我们知道雾霾对交通影响较大.某市交通部门发现,在一个月内,当排放量分别是60,120,180时,某路口的交通流量(单位:万辆)一次是800,600,200,而在一个月内,排放量是60,120,180的概率一次是,,(),求该路口一个月的交通流量期望值的取值范围.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com