精英家教网 > 高中数学 > 题目详情
设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.
(Ⅰ);(Ⅱ)存在这样的k和m,且;(Ⅲ)的符号为正.

试题分析:(Ⅰ)首先由,得到关于的两个方程,从而求出,这样就可得到 的表达式,根据它的特点可想到用导数的方法求出的极小值; (Ⅱ)由(Ⅰ)中所求的,易得到它们有一个公共的点,且在这个点处有相同的切线,这样就可将问题转化为证明分别在这条切线的上方和下方,两线的上下方可转化为函数与0的大小,即证成立,从而得到的值; (Ⅲ)由已知易得,由零点的意义,可得到关于两个方程,根据结构特征将两式相减,得到关于的关系式,又对求导,进而得到,结合上面关系可化简得:,针对特征将当作一个整体,可转化为关于 的函数,对其求导分析得,恒成立.
试题解析:解:(Ⅰ)由,得,解得        2分
=
利用导数方法可得的极小值为  5分
(Ⅱ)因有一个公共点,而函数在点的切线方程为
下面验证都成立即可               7分
,得,知恒成立          8分
,即,易知其在上递增,在上递减,
所以的最大值为,所以恒成立.
故存在这样的k和m,且         10分
(Ⅲ)的符号为正. 理由为:因为有两个零点,则有
,两式相减得 12分
,于是
 14分
①当时,令,则,且.
,则,则上为增函数.而,所以,即. 又因为,所以.
②当时,同理可得:.
综上所述:的符号为正            16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(1)当时,求函数的单调区间;
(2)当时, 若,使得, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ln(x+1)-的零点所在的大致区间是(  )
A.(0,1)B.(1,2)
C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中常数).
(1)当时,求的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,使得曲线
在点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,若对任意的恒成立,求实数的值;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)求的单调区间和极值;
(2)当m为何值时,不等式 恒成立?
(3)证明:当时,方程内有唯一实根.
(e为自然对数的底;参考公式:.)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数为常数)的图象过原点,且对任意 总有成立;
(1)若的最大值等于1,求的解析式;
(2)试比较的大小关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是.
(1)求双曲线的方程;(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,若上的极值点分别为,则的值为( )
A.2B.3C.4D.6

查看答案和解析>>

同步练习册答案