精英家教网 > 高中数学 > 题目详情
14.直线y=kx-1(k∈R)与圆(x-1)2+y2=4所截得的弦为AB,则|AB|的最小值是(  )
A.2$\sqrt{2}$B.2C.3D.4

分析 由题设知,当直线AB过点M(0,-1),且与CM垂直时,|AB|取最小值,求出|CM|,能求出|AB|的最小值.

解答 解:圆(x-1)2+y2=4的圆心坐标为C(1,0),半径为2
∵直线y=kx-1恒过点M(0,-1),
∴当直线AB过点M(0,-1),且与CM垂直时,|AB|取最小值,
∵|CM|=$\sqrt{2}$,
∴|AB|min=2$\sqrt{4-2}$=2$\sqrt{2}$,
故选:A.

点评 本题考查直线与圆的相交弦的最小值的求法,是中档题,解题时要注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则($\frac{x}{a}$+$\frac{1}{x}$+$\sqrt{2}$)4的展开式中常数项为$\frac{23}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC的三边a,b,c所对的角分别为A,B,C且sinA:sinB:sinC=2:3:4.若△ABC的面积为12$\sqrt{15}$,则△ABC的外接圆的半径R=$\frac{32\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A(1,1,2),B(-1,2,1),O为坐标原点,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角是(  )
A.0B.$\frac{π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点(4,6)且与圆(x-2)2+(y-3)2=4相切的直线方程是5x-12y+77=0或x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的不等式ax2+bx+c>0解集为(1,3),则cx2+bx+a<0的解集为(-∞,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(2x)=4x-3,g(x)=x2-2x+5,求:
(1)f(x)的表达式;
(2)f[g(x)]的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=$\frac{1}{2}$AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=$\frac{1}{3}$PD,求异面直线AE与PB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N*
(1)求an
(2)求证:$\frac{a_1}{{({{a_1}+1})({{a_2}+1})}}+\frac{a_2}{{({{a_2}+1})({{a_3}+1})}}+…+\frac{a_n}{{({{a_n}+1})({{a_{n+1}}+1})}}<\frac{1}{3}$.

查看答案和解析>>

同步练习册答案