精英家教网 > 高中数学 > 题目详情
14.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是30m,则河流的宽度BC等于$60(\sqrt{3}-1)$m.

分析 求出三角形ABC的三个角和边AC=60,利用正弦定理解出BC.

解答 解:由题意可知∠C=30°,∠BAC=45°,
∴∠ABC=105°,AC=60,
在△ABC中,由正弦定理得$\frac{BC}{sin45°}=\frac{60}{sin75°}$,解得BC=$60(\sqrt{3}-1)$.
故答案为$60(\sqrt{3}-1)$m.

点评 本题考查了正弦定理,解三角形的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.抛掷一枚质地均匀的骰子两次,记A={两次的点数均为偶数},B={两次的点数之和为8},则P(B|A)=(  )
A.$\frac{1}{12}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一条直线和直线外三个点最多能确定的平面个数是(  )
A.4B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设偶函数f(x)在(0,+∞)上f'(x)<0,且f(2)=0,则不等式$\frac{f(x)+f(-x)}{x}>0$的解集为(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B出发沿北偏东α的方向追赶渔船乙,刚好用两小时追赶上.
(1)求渔船甲的速度;
(2)求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②③写出所有正确结论的序号)
①x∈(-∞,1),f(x)>0;
②若x0∈R,使ax0,bx0,cx0不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x0∈(1,2),使f(x0)=0;
④若△ABC为直角三角形,对于n∈N*,f(2n)>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{{3+\sqrt{5}}}{2}$D.$\frac{{3-\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC和△A1B1C1所在平面相交,并且AA1,BB1,CC1交于一点.
(1)求证:AB和A1B1在同一平面内;
(2)若AB∩A1B1=M,BC∩B1C1=N,AC∩A1C1=P,求证:M,N,P三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,对于任意的x∈R,满足条件f(x)+f(-x)=0的函数是(  )
A.$f(x)={x^{\frac{1}{3}}}$B.f(x)=sinx+1C.f(x)=cosxD.$f(x)={log_2}({x^2}+1)$

查看答案和解析>>

同步练习册答案