精英家教网 > 高中数学 > 题目详情
14.不等式|x-12|<3的解集为{x|9<x<15}.

分析 先将不等式等价为:-3<x-12<3,再求出相应的解集,并用适当的方式表示即可.

解答 解:不等式|x-12|<3可等价为:
-3<x-12<3,
解得,9<x<15,
故解集为:{x|9<x<15}
也用区间表示为:(9,15),
故答案为:{x|9<x<15}.

点评 本题主要考查了含绝对值不等式的解法,合理等价是解决本题的关键,涉及解集的表示方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.集合 A={x|y=$\sqrt{4-x}$},B={x|x≥3},则 A∩B=(  )
A.{x|3≤x≤4}B.{x|x≤3或x≥4}C.{x|x≤3或x>4}D.{x|3≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“sin2α-$\sqrt{3}$cos2α=1”是“α=$\frac{π}{4}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P是抛物线y2=2x上的动点,定点Q(m,0),那么“m≤1“是“|PQ|的最小值为|m|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\frac{a+ln(2x+1)}{2x+1}$.
(Ⅰ)若曲线f(x)在x=0处的切线与直线x-2y-2016=0垂直,求y=f(x)的极值;
(Ⅱ)若关于t的方程(2x+1)2f′(x)=t3-12t在x$∈[\frac{e-1}{2},\frac{{e}^{2}-1}{2}]$时恒有3个不同的实数根,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,空间四边形ABCD中,每条边的长度和两条对角线的长度都等于1,M、N分别是AB、AD的中点,计算$\overrightarrow{MN}$•$\overrightarrow{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由命题p:“函数y=$\frac{1}{x}$是减函数”与q:“数列a、a2、a3,…是等比数列”构成的命题,下列判断正确的是(  )
A.p∨q为真,p∧q为假B.p∨q为假,p∧q为假C.p∨q为真,p∧q为假D.p∨q为假,p∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{(x+a)^{2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}\right.$,若f(0)是f(x)的最小值,则实数a的取值范围[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{y≥0}\end{array}\right.$,则$\frac{y+1}{2x+2}$的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{5}{2}$]B.[$\frac{1}{3}$,5]C.[$\frac{2}{3}$,10]D.[-$\frac{1}{3}$,5]

查看答案和解析>>

同步练习册答案