精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x3,则f(x)的单调递增区间为(-∞,+∞).

分析 根据函数性质进行判断即可.

解答 解:∵f(x)=x3
∴f′(x)=3x2≥0,
则函数为增函数,
即函数的单调递增区间为(-∞,+∞),
故答案为:(-∞,+∞)

点评 本题主要考查函数单调区间的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设△ABC的内角A,B,C所对的边长为a,b,c,且$\frac{1}{a}$=$\frac{1}{b}$+$\frac{1}{c}$,则sinA的最大值为 (  )
A.$\frac{\sqrt{15}}{8}$B.$\frac{\sqrt{15}}{6}$C.$\frac{\sqrt{5}}{8}$D.$\frac{\sqrt{5}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域为R,对任意的实数x,y,均有f(x+y)=f(x)f(y),且f(x)≠0,当x>0时,f(x)>1.
(1)证明:f(0)=1;
(2)证明:f(x)在R上是增函数;
(3)若f(x-2)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知logax=2,logay=3,求(x•$\sqrt{\frac{{x}^{-\frac{1}{2}}}{y}}$)${\;}^{\frac{1}{3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知${log}_{\frac{1}{5}}5$=a,log3b=2,则 b-a=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从一群游戏的小孩中抽出k人,一人分一个苹果,让他们返回继续游戏,一段时间后,再从中任取m人,发现其中有n个小孩曾分过苹果,估计一共有小孩多少人(  )
A.k•$\frac{m}{n}$B.k•$\frac{n}{m}$C.k+m-nD.不能估计

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若命题“?x∈R,x2+(a-1)x+1>0”是真命题,则实数a的取值范围是(  )
A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=log37,b=21.1,c=0.81.1则(  )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

同步练习册答案