精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为Sn,a1=2.当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求证:{Sn+1}是等比数列;
(2)求数列{nan}的前n项和Tn.

(1)见解析
(2)Tn

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

若等比数列满足:             

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为为等比数列,且 
(1)求数列的通项公式;
(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为,且).
(1)求的值;
(2)猜想的表达式,并加以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定数列.对,该数列前项的最大值记为,后的最小值记为,.
(1)设数列为3,4,7,1,写出,,的值;
(2)设()是公比大于1的等比数列,且.证明:,,…,是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足.
(1)令,证明:是等比数列;
(2)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,,问是否存在最小正整数n使得成立?若存在,试确定n的值,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}中, ,,
(1)求证数列{}为等比数列.
(2)判断265是否是数列{}中的项,若是,指出是第几项,并求出该项以前所有项的和(不含265),若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列各项都是正数,.
(1)求数列的通项公式;
(2)求证:.

查看答案和解析>>

同步练习册答案