精英家教网 > 高中数学 > 题目详情
(2012•贵阳模拟)若对于任意实数x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,则a3的值为
-8
-8
分析:把 x4=[-2+(x+2)]4 展开求得(x+2)3的系数,再结合已知条件求得a3的值.
解答:解:∵x4=[-2+(x+2)]4=
C
0
4
(-2)4 (x+2)0+
C
1
4
(-2)3(x+2)1+
C
4
(-2)2 (x+2)2+
C
3
4
(-2)(x+2)3+
C
4
4
 (-2)0(x+2)4
且有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4
∴a3=
C
3
4
(-2)=-8,
故答案为-8.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•贵阳模拟)直线x-2y+1=0关于直线x=3对称的直线方程为
x+2y-7=0
x+2y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵阳模拟)如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M为棱CC1上一点.
(1)若C1M=
32
,求异面直线A1M和C1D1所成角的正切值;
(2)是否存在这样的点M使得BM⊥平面A1B1M?若存在,求出C1M的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵阳模拟)若函数f(x)定义域为R,满足对任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),则称f(x)为“V形函数”;若函数g(x)定义域为R,g(x)恒大于0,且对任意x1,x2∈R,有lgg(x1+x2)≤lgg(x1)+lgg(x2),则称g(x)为“对数V形函数”.
(1)当f(x)=x2时,判断f(x)是否为V形函数,并说明理由;
(2)当g(x)=x2+2时,证明:g(x)是对数V形函数;
(3)若f(x)是V形函数,且满足对任意x∈R,有f(x)≥2,问f(x)是否为对数V形函数?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵阳模拟)若实数a、b、m满足2a=5b=m,且
2
a
+
1
b
=2
,则m的值为
2
5
2
5

查看答案和解析>>

同步练习册答案