精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若|f(x)|≥ax,则a的取值范围是(
A.(﹣∞,0]
B.(﹣∞,1]
C.[﹣2,1]
D.[﹣2,0]

【答案】D
【解析】解:由题意可作出函数y=|f(x)|的图像,和函数y=ax的图像,
由图像可知:函数y=ax的图像为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,
求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,
故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]
故选:D
由函数图像的变换,结合基本初等函数的图像可作出函数y=|f(x)|的图像,和函数y=ax的图像,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA的中点.
(1)求证:PC∥平面BDE
(2)求三棱锥P﹣CED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点到直线 的距离为 ,离心率 ,A,B是椭圆上的两动点,动点P满足 ,(其中λ为常数).
(1)求椭圆标准方程;
(2)当λ=1且直线AB与OP斜率均存在时,求|kAB|+|kOP|的最小值;
(3)若G是线段AB的中点,且kOAkOB=kOGkAB , 问是否存在常数λ和平面内两定点M,N,使得动点P满足PM+PN=18,若存在,求出λ的值和定点M,N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ,左焦点 ,且离心率 (Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆C的右顶点A.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边, = ,且a+c=2.
(1)求角B;
(2)求边长b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于实数x的不等式﹣x2+bx+c<0的解集是{x|x<﹣3或x>2},则关于x的不等式cx2﹣bx﹣1>0的解集是(
A.(﹣
B.(﹣2,3)
C.(﹣∞,﹣ )∪( ,+∞)
D.(﹣∞,﹣2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?

组号

分组

频数

频率

第1组

[160,165)

5

0.050

第2组

[165,170)

0.350

第3组

[170,175)

30

第4组

[175,180)

20

0.200

第5组

[180,185)

10

0.100

合计

100

1.00

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年5月20日,针对部分“二线城市”房价上涨过快,媒体认为国务院常务会议可能再次确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):

月收入(百元)

赞成人数

[15,25)

8

[25,35)

7

[35,45)

10

[45,55)

6

[55,65)

2

[65,75)

2


(Ⅰ)试根据频率分布直方图估计这60人的中位数和平均月收入;
(Ⅱ)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求被选取的2人都不赞成的概率.

查看答案和解析>>

同步练习册答案