精英家教网 > 高中数学 > 题目详情
1.函数f(x)=$\frac{1}{lgx}$+$\sqrt{2-x}$的定义域为{x|0<x≤2且x≠1}.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{x>0}\\{lgx≠0}\\{2-x≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x≠1}\\{x≤2}\end{array}\right.$,
得0<x≤2且x≠1,
即函数的定义域为{x|0<x≤2且x≠1},
故答案为:{x|0<x≤2且x≠1}

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若a<b<0,则以下结论正确的是(  )
A.a2<ab<b2B.a2<b2<abC.a2>ab>b2D.a2>b2>ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{{{(x-a)}^2}}}{lnx}$(其中a为常数).
(Ⅰ)当a=0时,求函数的单调区间;
(Ⅱ)a≥$\frac{1}{2}$且函数f(x)有3个极值点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正三棱柱ABC-A1B1C1所有的棱长均为2,D是CC1的中点.
(1)求多面体ABD-A1B1C1的体积.
(2)求直线CC1与平面ABD所成角的大小.
(3)(理科)求二面角A-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校的600名师生进行调查,统计结果如下:
赞成改革不赞成改革无所谓
教师人数120y30
学生人数xz110
在这600名师生中随机抽取1人,这个人“赞成改革”且是学生的概率为0.4,已知y=$\frac{2}{3}$z
(1)现从这600名师生中用分层抽样的方法抽取60人进行问卷调查,则应抽取“不赞成改革”的教师和学生的人数各是多少?
(2)在(1)中抽取的“不赞成改革”的教师中(甲在其中),随机选出2人进行座谈,求教师甲被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且短轴长为2.
(1)求椭圆的方程;
(2)若直线l:y=x+$\sqrt{2}$与椭圆交于A,B两点,O为坐标原点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果不等式(m+1)x2+2(m+1)x+1>0对任意实数x恒成立,则实数m的取值范围是(  )
A.[-1,0)B.(-1,0)C.(-1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x3-3x+2的极大值点是(  )
A.x=±1B.x=1C.x=0D.x=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式x2-ax-6a2<0(a<0)的解集为(  )
A.(-∞,-2a)∪(3a,+∞)B.(-∞,3a)∪(-2a,+∞)C.(-2a,3a)D.(3a,-2a)

查看答案和解析>>

同步练习册答案