精英家教网 > 高中数学 > 题目详情
(2012•陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数a+
b
i
为纯虚数”的(  )
分析:利用“ab=0”与“复数a+
b
i
为纯虚数”互为前提与结论,经过推导判断充要条件.
解答:解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数a+
b
i
为纯虚数,否则不成立;
复数a+
b
i
=a-bi为纯虚数,所以a=0并且b≠0,所以ab=0,
因此a,b∈R,i是虚数单位,则“ab=0”是“复数a+
b
i
为纯虚数”的必要不充分条件.
故选B.
点评:本题考查复数的基本概念,充要条件的判断,考查基本知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•陕西)设函数f(x)=xex,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西)设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(
1
2
,1)
内存在唯一的零点;
(2)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围;
(3)在(1)的条件下,设xn是fn(x)在(
1
2
,1)
内的零点,判断数列x2,x3,…,xn?的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西)设函数f(x)=
lnx,x>0
-2x-1,x≤0
,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x-2y在D上的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西)设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(
12
,1)
内存在唯一的零点;
(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.

查看答案和解析>>

同步练习册答案