精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)若相交于两点,求的面积.

【答案】1的普通方程为的直角坐标方程为;(2.

【解析】

1)由曲线的参数方程能求出的普通方程,曲线的极坐标方程转化为,由此能求出的直角坐标方程;

2)求出原点到直线的距离为,化的参数方程为普通方程,可得表示圆心为,半径的圆,求出到直线的距离,再由垂径定理求得,代入三角形面积公式求解.

1)消去参数可得的普通方程为

,得

又因为

所以的直角坐标方程为

2)如图:

原点到直线的距离

曲线的标准方程为,表示圆心为,半径的圆,

到直线的距离

所以

综上,的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为.

)求椭圆的标准方程;

)设直线与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的3倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为世界第一运动.早在2000多年前的春秋战国时代,就有了一种球类游戏蹴鞠,后来经过阿拉伯人传到欧洲,发展成现代足球.18631026日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

1)求证:平面

2)求直线和平面所成角的正切值;

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知倾斜角为的直线过点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,直线与曲线分别交于两点.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点为F1F2过点F1的直线l与双曲线C的左支交于AB两点,BF1F2的面积是AF1F2面积的三倍,∠F1AF290°,则双曲线C的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

同步练习册答案