精英家教网 > 高中数学 > 题目详情
13.设a=cos212°-sin212°,b=$\frac{2tan12°}{1-ta{n}^{2}12°}$,c=$\sqrt{\frac{1-cos48°}{2}}$,则有(  )
A.c<b<aB.a<b<cC.a<c<bD.b<a<c

分析 由条件利用三角恒等变换,特殊角的三角函数值即可比较得解.

解答 解:∵a=cos212°-sin212°=cos24°,
b=$\frac{2tan12°}{1-ta{n}^{2}12°}$=tan24°<$\frac{\sqrt{3}}{3}$<$\frac{\sqrt{3}}{2}$<cos24°,
c=$\sqrt{\frac{1-cos48°}{2}}$=sin24°$<\frac{1}{2}$<sin24°,
∴则a、b、c的大小关系为 c<b<a.
故选:A.

点评 本题主要考查三角恒等变换,特殊角的三角函数值的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若0≤α<β<γ<2π且sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求β-α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=x2-4ax+1在[1,3]上是增函数,则实数a的取值范围是(  )
A.(-∞,1]B.$({-∞,\frac{1}{2}}]$C.$[{\frac{1}{2},\frac{3}{2}}]$D.$[{\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$f(x)={log_{\frac{1}{2}}}({{x^2}-4x+3})$,则函数f(x)的定义域是(-∞,1)∪(3,+∞),单调递减区间是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为响应国家“精准扶贫,产业扶贫”的战略,进一步优化能源消费结构,某市决定在一地处山区的A县推进光伏发电项目.在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表.以样本的频率作为概率.
用电量(度)(0,200](200,400](400,600](600,800](800,1000]
户数51510155
(I)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为X,求X的数学期望;
(II)已知该县某山区自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度进行收购.经测算以每千瓦装机容量年平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若实数x、y满足不等式组$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,则实数m的值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上单调递增,则实数a的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
50.5~60.560.08
60.5~70.512      0.16
70.5~80.5150.2              
80.5~90.5240.32
90.5~100.5180.24
合计751
(Ⅰ)填充频率分布表的空格(将答案直接填在答题卡的表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)若成绩在80.5~90.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的函数f(x),g(x),其中f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=a2x3+x2+a3(a≠0)
(1)求f(x)和g(x)的解析式;
(2)命题P:对任意x∈[1,2],都有f(x)≥1,命题Q:存在x∈[-2,3],使g(x)≥17,若P∨Q为真,求a的取值范围.

查看答案和解析>>

同步练习册答案