精英家教网 > 高中数学 > 题目详情

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

【答案】D

【解析】

由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以为首项,为公比的等比数列的前17项的和,再由等比数列前项和公式求解即可.

解:根据题意,

当孩子18岁生日时,孩子在一周岁生日时存入的元产生的本利合计为

同理:孩子在2周岁生日时存入的元产生的本利合计为

孩子在3周岁生日时存入的元产生的本利合计为

孩子在17周岁生日时存入的元产生的本利合计为

可以看成是以为首项,为公比的等比数列的前17项的和,

此时将存款(含利息)全部取回,

则取回的钱的总数:

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司想了解对某产品投入的宣传费用与该产品的营业额的影响.下面是以往公司对该产品的宣传费用 (单位:万元)和产品营业额 (单位:万元)的统计折线图.

(Ⅰ)根据折线图可以判断,可用线性回归模型拟合宣传费用与产品营业额的关系,请用相关系数加以说明;

(Ⅱ)建立产品营业额关于宣传费用的归方程;

(Ⅲ)若某段时间内产品利润与宣传费和营业额的关系为,应投入宣传费多少万元才能使利润最大,并求最大利润.

参考数据:

参考公式:相关系数,

回归方程中斜率和截距的最小二乘佔计公式分别为 .(计算结果保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, , 的中点, 的中点.将沿折起到,使得平面平面(如图).

图1 图2

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是集合 的一个含有个元素的子集.

(Ⅰ)当时,

(i)写出方程的解

(ii)若方程至少有三组不同的解,写出的所有可能取值.

(Ⅱ)证明:对任意一个,存在正整数使得方程 至少有三组不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,中心在原点的椭圆C的上焦点为,离心率等于

求椭圆C的方程;

设过且不垂直于坐标轴的动直线l交椭圆CAB两点,问:线段OF上是否存在一点D,使得以DADB为邻边的平行四边形为菱形?作出判断并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项

(1)求证:数列为等比数列;

(2)记,若Sn<100,求最大正整数n

(3)是否存在互不相等的正整数msn,使msn成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中有个大小之地都相同的小球,其中红球个,白球个,黑球个,现从袋中有放回的取球,每次随机取一个,连续取两次.

1)设表示先后两次所取到的球,试写出所有可能抽取结果;

2)求连续两次都取到白球的概率;

3)若取到红球记分,取到白球记分,取到黑球记分,求连续两次球所得总分数大于分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若曲线在点处的切线与直线平行,求的值.

)在(1)的条件下,求函数的单调区间和极值.

)在(1)的条件下,试判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信支付诞生于微信红包,早期知识作为社交的一部分“发红包”而诞生的,在发红包之余才发现,原来微信支付不仅可以用来发红包,还可以用来支付,现在微信支付被越来越多的人们所接受,现从某市市民中随机抽取300为对是否使用微信支付进行调查,得到下列的列联表:

年轻人

非年轻人

总计

经常使用微信支付

165

225

不常使用微信支付

合计

90

300

根据表中数据,我们得到的统计学的结论是:由__________的把握认为“使用微信支付与年龄有关”。

其中

查看答案和解析>>

同步练习册答案