精英家教网 > 高中数学 > 题目详情
19.化简:$\frac{1}{co{s}^{2}α\sqrt{1+ta{n}^{2}α}}$-$\sqrt{\frac{1+sinα}{1-sinα}}$(α为第二象限角)

分析 由条件利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,化简所给的式子可得结果.

解答 解:∵α为第二象限角,∴cosα<0,
∴$\frac{1}{co{s}^{2}α\sqrt{1+ta{n}^{2}α}}$-$\sqrt{\frac{1+sinα}{1-sinα}}$=$\frac{1}{{cos}^{2}α•\frac{1}{|cosα|}}$-$\frac{1+sinα}{|cosα|}$=$\frac{1}{-cosα}$+$\frac{1+sinα}{cosα}$=tanα.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数y=-2sin(3x-$\frac{π}{6}$)的周期,值域,求函数的对称中心,对称轴,单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.24•6-2+(-2014)0+${9}^{-\frac{1}{2}}$=(  )
A.$\frac{4}{3}$B.$\frac{4}{9}$C.$\frac{16}{9}$D.$\frac{26}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=cos2x+$\sqrt{3}$sinx+1(x∈R)的最大值为$\frac{11}{4}$,最小值为1-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要得到函数y=cosx的图象,只需将函数y=sin(x-$\frac{π}{3}$)的图象(  )
A.向左平移$\frac{π}{6}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{5π}{6}$D.向右平移$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,是偶函数的是(  )
A.f(x)=xB.f(x)=sinxC.f(x)=x2D.f(x)=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x、y满足不等式组$\left\{\begin{array}{l}{y-x≤0}\\{x+y≥0}\\{x≤1}\end{array}\right.$,求x+2y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=x2-2x+5,x∈[0,5]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={4,5,6,8},N={3,5,7,8},则M∩N=(  )
A.B.{5}C.{8}D.{5,8}

查看答案和解析>>

同步练习册答案