【题目】如图,椭圆: 的焦距与椭圆: 的短轴长相等,且与的长轴长相等,这两个椭圆在第一象限的交点为,直线经过在轴正半轴上的顶点且与直线(为坐标原点)垂直, 与的另一个交点为, 与交于, 两点.
(1)求的标准方程;
(2)求.
科目:高中数学 来源: 题型:
【题目】经过函数性质的学习,我们知道:“函数的图象关于轴成轴对称图形”的充要条件是“为偶函数”.
(1)若为偶函数,且当时,,求的解析式,并求不等式的解集;
(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数的图象关于直线成轴对称图形”的充要条件是“为偶函数”.若函数的图象关于直线对称,且当时,.
(i)求的解析式;
(ii)求不等式的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.
(1)求直线和曲线的直角坐标方程,并指明曲线的形状;
(2)设直线与曲线交于两点, 为坐标原点,且,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数的最小值是,且c=1,,求F(2)+F(-2)的值;
(2)若a=1,c=0,且在区间(0,1]上恒成立,试求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是一个半圆柱与多面体构成的几何体,平面与半圆柱的下底面共面,且, 为弧上(不与重合)的动点.
(1)证明: 平面;
(2)若四边形为正方形,且, ,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com