精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)对一切x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)若f(-3)=a,用a表示f(12).

分析 (1)判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,∴令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;
(2)由于知晓f(-3)=a故解本题关键是找出f(12)与f(-3)之间的关系,注意用(1)的结论.

解答 解:(1)证明:显然f(x)的定义域是R,关于原点对称.
又∵函数对一切x、y都有f(x+y)=f(x)+f(y),
∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
再令y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)为奇函数.
(2)∵f(-3)=a且f(x)为奇函数,
∴f(3)=-f(-3)=-a.
又∵f(x+y)=f(x)+f(y),x、y∈R,
∴f(12)=f(6+6)=f(6)+f(6)
=2f(6)=2f(3+3)=4f(3)=-4a.
故f(12)=-4a.

点评 本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,在第二问的求值中根据恒等式的结构把已知用未知表示出来,做题时注意体会抽象函数恒等式的用法规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,已知曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=5+sinα}\end{array}\right.$(α为参数),在以原点为极点,x轴的正半轴为极轴建立的极坐标系上有曲线C2:ρ=2,设点A,B分别在曲线C1、C2上,则|AB|的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正方形ABCD的边长为1,E,F分别为BC,CD的中点,将其沿AE,EF,AF折成四面体,则四面体的体积为(  )
A.$\frac{1}{8}$B.$\frac{1}{24}$C.$\frac{{\sqrt{2}}}{24}$D.$\frac{{\sqrt{2}}}{48}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.10件不同厂生产的同类产品:
(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?
(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}为等差数列,bn=3an
(1)求证数列{bn}为等比数列;
(2)若a8+a13=m,求b1•b2•b3•…•b20
(3)若b3•b5=39,a4+a6=3,求b1•b2•b3•…•bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为完美函数.给出下列四个函数,其中是完美函数的是①③.
①f(x)=$\frac{1}{x}$;②f(x)=|x|;③f(x)=x2-3x;④f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sinx+x,则不等式f(x-2)+f(x2-4)<0的解集为(  )
A.(-1,6)B.(-6,1)C.(-2,3)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知全集为R,集合A={-1,0,1,2},B={x|=log2x≥0},则A∩∁RB等于(  )
A.(0,+∞)B.[1,+∞)C.{-1,0}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-2|+|2x-1|.
(1)解不等式f(x)<2;
(2)若不等式f(x)<a(a∈R)的解集为空集,求a的取值范围.

查看答案和解析>>

同步练习册答案