【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线与轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点、,点关于轴的对称点为.
(1)求椭圆的方程;
(2)求证:、、三点共线;
(3)求面积的最大值.
科目:高中数学 来源: 题型:
【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:),统计的茎叶图如图所示:
(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案:所有苹果均以5.5元/千克收购;
方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.
(1)求异面直线AD1与EC所成角的大小;
(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于曲线,有如下结论:
①曲线C关于原点对称;
②曲线C关于直线x±y=0对称;
③曲线C是封闭图形,且封闭图形的面积大于2π;
④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;
⑤曲线C与曲线有4个交点,这4点构成正方形.其中所有正确结论的序号为__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有,两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从,两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:
(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;
(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?
优质品 | 非优质品 | 合计 | |
合计 |
(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆,过定点的直线交圆于两点.
(1)若,求直线的斜率;
(2)求面积的取值范围;
(3)若圆内一点的坐标是,且过点的直线交圆于两点,,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com