精英家教网 > 高中数学 > 题目详情

求不等式的解集:-x2+4x+5<0.

解:∵-x2+4x+5<0,∴x2-4x-5>0,∴(x-5)(x+1)>0,∴x<-1,或x>5,
∴原不等式的解集为{x|x<-1或x>5}.
分析:利用一元二次不等式的解法即可求出.
点评:熟练掌握一元二次不等式的解法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式(kx-k2-4)(x-4)>0,其中k∈R.
(1)当k变化时,试求不等式的解集A;
(2)对于不等式的解集A,若满足A∩Z=B(其中Z为整数集).试探究集合B能否为有限集?若能,求出使得集合B中元素个数最少的k的所有取值,并用列举法表示集合B;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x不等式:ax2+(a-1)x-1≥0.
(Ⅰ)当a=2时,求不等式的解集;
(Ⅱ)当a∈R时,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式:-x2+3x>|a(x-1)|.
(1)若a=1,求不等式的解集;
(2)若不等式只有一个整数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式kx2-2x+6k<0,(k>0)
(1)若不等式的解集为{x|2<x<3},求实数k的值;
(2)若不等式对一切2<x<3都成立,求实数k的取值范围;
(3)若不等式的解集为集合{x|2<x<3}的子集,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式k•4x-2x+1+6k<0
(1)若不等式的解集A={x|1<x<log23},求实数k的值;
(2)若不等式的解集A?{x|1<x<log23},求实数k的取值范围;
(3)若不等式的解集A⊆{x|1<x<log23},求实数k的取值范围;
(4)若不等式的解集A∩{x|1<x<log23}≠?,求实数k的取值范围.

查看答案和解析>>

同步练习册答案